Featured Research

from universities, journals, and other organizations

Progress Toward New Storage Media: Reliable Nanopatterns On Chips

Date:
October 30, 2008
Source:
Wiley-Blackwell
Summary:
Scientists have produced reliable nanopatterns of a spin-transition compound on silicon oxide chips. This is a decisive step toward a new generation of molecular storage media.

Scientists have been able to produce reliable nanopatterns of a spin-transition compound on silicon oxide chips. This is a decisive step toward a new generation of molecular storage media in which binary data are stored by the "switching" of electron spins.
Credit: Copyright Wiley-VCH

In this information age, increased storage capacity is a central challenge for science and technology. A team of German and Italian researchers has pursued this by exploring the concept of “nanostructured storage domains”.

As the scientists, led by Massimiliano Cavallini at the National Research Council (CNR) in Bologna (Italy) and Mario Ruben at the Forschungszentrum Karlsruhe (Germany), report in the journal Angewandte Chemie, they have been able to produce reliable nanopatterns of a spin-transition compound on silicon oxide chips. This is a decisive step toward a new generation of molecular storage media in which binary data are stored by the “switching” of electron spins.

Currently, computer hard drives store data by magnetizing the surface of a rotating disk. Each “storage cell” has an “address”, so that stored data can be accessed directly. To increase storage capacity, the individual magnetic domains are made smaller and smaller; we are however getting close to the limit. Thermal excitation occasionally causes some of the magnetic particles to flip in the other direction. When the domains are very small, the entire cell can rapidly lose its magnetization.

To achieve higher information density, we could change to other switchable material properties, such as the transition between two spin states. For example, iron(II) compounds can exist in either a high- or a low-spin state. “Switching” (flipping) can be controlled by changes in temperature, pressure, or electromagnetic radiation.

In addition to two distinguishable states to represent 0 and 1, data storage also requires a unique “address” for each storage location that can be identified by the optical writing and reading units of the computer. This requires an interface that makes the nanoscopic spin-state transitions of the molecular switching units compatible with the microscale instrument environment. This is possible if the spin-transition compound can be put into a highly ordered micro- or nanostructure.

By using special unconventional micro- and nanolithographic techniques, the team was able to “print” a neutral iron(II) complex onto a silicon wafer in the form of very fine lines. In this process, the nanocrystals organize themselves into a preferred orientation along the line. Furthermore, the researchers were able to transfer the pattern of a recorded CD onto a film of this iron compound. This is the first proof that it is possible to produce readable logic patterns with a spin-transfer compound.

To make the stripe structures technologically useful, the switching process must be adapted to room-temperature conditions; work on this front is already at an advanced stage.


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Journal Reference:

  1. Micro- and Nanopatterning of Spin-Transition Compounds into Logical Structures. Angewandte Chemie International Edition, 2008, 47, 8596%u20138600 DOI: 10.1002/anie.200802085

Cite This Page:

Wiley-Blackwell. "Progress Toward New Storage Media: Reliable Nanopatterns On Chips." ScienceDaily. ScienceDaily, 30 October 2008. <www.sciencedaily.com/releases/2008/10/081027140721.htm>.
Wiley-Blackwell. (2008, October 30). Progress Toward New Storage Media: Reliable Nanopatterns On Chips. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2008/10/081027140721.htm
Wiley-Blackwell. "Progress Toward New Storage Media: Reliable Nanopatterns On Chips." ScienceDaily. www.sciencedaily.com/releases/2008/10/081027140721.htm (accessed April 19, 2014).

Share This



More Computers & Math News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Facebook Announces Location-Sharing Feature 'Nearby Friends'

Facebook Announces Location-Sharing Feature 'Nearby Friends'

Newsy (Apr. 18, 2014) Facebook's pending Nearby Friends feature will give users the option to share their nonspecific or specific locations with certain friends. Video provided by Newsy
Powered by NewsLook.com
Michaels Hack Compromises About 3 Million Credit Cards

Michaels Hack Compromises About 3 Million Credit Cards

Newsy (Apr. 18, 2014) Michaels is now confirming that an eight-month security breach compromised about 3 million customers' credit and debit card data. Video provided by Newsy
Powered by NewsLook.com
Twitter Introduces Facebook-Style App Install Ads

Twitter Introduces Facebook-Style App Install Ads

Newsy (Apr. 17, 2014) Twitter hopes to make money on app install ads, which has proven to be a successful strategy for Facebook. Video provided by Newsy
Powered by NewsLook.com
Heartbleed Hack Leads To Arrest

Heartbleed Hack Leads To Arrest

Newsy (Apr. 17, 2014) A 19-year-old computer science student has been arrested in relation to a data breach of 900 social insurance numbers from Canada's revenue agency. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins