Science News

... from universities, journals, and other research organizations

New Tumor Inhibitor For Treatment Of Hereditary Breast Cancer Shows Promising Results In Mouse Model

Nov. 2, 2008 — Researchers of the Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital used the novel inhibitor AZD2281 to target breast cancer, in which the BRCA1-gene plays a role, in a genetically engineered mouse model. Treatment resulted in tumor regression and a strong increase in survival without signs of toxicity. The inhibitor, which recently entered trials in human cancer patients, thus seems to have therapeutic potential for BRCA-defective tumors.


Share This:

Resistance

Long-term treatment with AZD2281 in the mouse model did result in the development of drug resistance. This could however be reversed by coadministration of an other type of inhibitor, tariquidar. Furthermore, the researchers studied the effect of combined treatment with AZD2281 and cisplatin or carboplatin. This increased the recurrence-free and overall survival, suggesting that AZD2281 potentiates the effect of these DNA-damaging agents.

Model

The researchers previously developed the mouse model to study BRCA1-associated breast tumors. BRCA1 defects are often observed in so called triple-negative tumors. No targeted therapy exists yet for this type of breast cancer, which account for about 15% of all breast tumors. The researchers now use the mouse model for preclinical evaluation of potential therapeutics that target tumors with BRCA1 defects and that might be useful for treatment of triple-negative cancers.

The results with AZD2281 show that the mouse model is not only useful for the investigation of the efficacy and toxicity of chemical compounds. Also the development, prevention and circumvention of drug resistance can be tested in the model. Hence, intervention studies in the mouse model may help to predict the basis of resistance to novel therapeutics well in advance of the human experience.

Ultimately, this may improve the clinical success rate for novel anticancer drugs.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by Netherlands Cancer Institute.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Sven Rottenberg, Janneke E. Jaspers, Ariena Kersbergen, Eline van der Burg, Anders O. H. Nygren, Serge A. L. Zander, Patrick W. B. Derksen, Michiel de Bruin, John Zevenhoven, Alan Lau, Robert Boulter, Aaron Cranston, Mark J. O'Connor, Niall M. B. Martin, Piet Borst, and Jos Jonkers. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. PNAS Online Early Edition, October 29, 2008
APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Unraveling Brain Tumors

Brain tumor researchers have found that brain tumors arise from cancer stem cells living within tiny protective areas formed by blood vessels in the. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?