Featured Research

from universities, journals, and other organizations

Scientists Map Molecular Regulation Of Fat-cell Genetics

Date:
November 11, 2008
Source:
University of Pennsylvania School of Medicine
Summary:
A research team has used state-of-the-art genetic technology to map thousands of positions where a molecular "master regulator" of fat-cell biology is nestled in DNA to control genes in these cells.

A research team led by Mitchell Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at the University of Pennsylvania School of Medicine, has used state-of-the-art genetic technology to map thousands of positions where a molecular “master regulator” of fat-cell biology is nestled in DNA to control genes in these cells.

The findings appear online this week in Genes & Development.

The international obesity epidemic is leading to major health risks, including increased rates of diabetes, heart disease, and cancer. Obesity is caused by increased numbers of fat cells that store more fat than normal. “This research has the potential to lead to new ways to think about therapies aimed at reducing the number of fat cells or altering fat cell function in ways that reduce the complications of obesity,” says Lazar.

The master molecule is called PPAR gamma, a gene regulator that is also the target of a major class of antidiabetic drugs, which include Actos® and Avandia. PPAR gamma binds directly to DNA, regulating the production of proteins by turning genes on or off. Actos® and Avandia are effective in treating diabetes, but their side effects, which include weight gain, prevent them from being recommended as a first-line therapy. The drugs bind to PPAR gamma in the nucleus of fat cells, which affects the expression of many genes, about twenty of which were previously known.

New biocomputing methods allowed first author Martina I. Lefterova, a PhD candidate in the Lazar lab, to discover roughly 5,300 additional sites that PPAR gamma targets in fat-cell DNA. The amount of data is enormous, and may allow additional insights into how fat-cell genes are regulated.

“Until now, we were looking at how PPAR gamma works one gene at a time,” says Lazar.  “It’s like we were peering at the pieces of a jigsaw puzzle in isolation.  Now we can look at the full picture.” Analysis of the data has already led the Penn team to understand how different factors, including one called C/EBP, cooperate with PPAR gamma to fulfill fat cell functions.

Lefterova used a new technology called Chip on Chip that, in its first step, employs an antibody to isolate the segments of DNA attached to PPAR gamma. Then in the second step, a microarray chip is used to determine the genetic sequences of the isolated DNA.

Decreasing the side effects associated with antidiabetic drugs is the main clinical goal of this work. The major side effects related to the mechanisms of these drugs is increased fat and increased edema, or water weight gain, so understanding exactly where and how these drugs affect gene regulators like PPAR gamma—whether their binding to PPAR gamma turns genes on or off—is important.

“We want to be able to determine which genes we want to affect in one case, but not the other, in order to eliminate unwanted side effects, but keep the positive anti-diabetic effects,” says Lazar.

In addition to Lazar, Penn co-authors are David Steger, Michael Schupp, Ana Cristancho, Jonathan Schug, Dan Feng David Zhuo, and Christian Stoeckert, Jr. This was a collaboration with Shirley Liu and Yong Zhang of the Dana-Farber Cancer Institute in Boston.  The National Institute of Diabetes, Digestive, and Kidney Diseases and the National Cancer Institute provided funding for this research.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Scientists Map Molecular Regulation Of Fat-cell Genetics." ScienceDaily. ScienceDaily, 11 November 2008. <www.sciencedaily.com/releases/2008/11/081104140912.htm>.
University of Pennsylvania School of Medicine. (2008, November 11). Scientists Map Molecular Regulation Of Fat-cell Genetics. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2008/11/081104140912.htm
University of Pennsylvania School of Medicine. "Scientists Map Molecular Regulation Of Fat-cell Genetics." ScienceDaily. www.sciencedaily.com/releases/2008/11/081104140912.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) — Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) — Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) — Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins