Featured Research

from universities, journals, and other organizations

Female Embryonic Sexual Development Driven By Universal Factor

Date:
November 17, 2008
Source:
University of Illinois at Urbana-Champaign
Summary:
A gene essential to the growth and development of most organ systems in the body also is vital to female, but not male, embryonic sexual development, scientists report.

Veterinary biosciences professor Humphrey Yao and graduate student Chia-Feng Liu found that a gene essential to the development of many organs is also vital to female, but not male, sexual development.
Credit: Photo by L. Brian Stauffer

A gene essential to the growth and development of most organ systems in the body also is vital to female – but not male – embryonic sexual development, scientists report this month.

Related Articles


The study, from researchers at the University of Illinois and the University of Texas, appears in Human Molecular Genetics. The findings lend support to a controversial hypothesis about mammalian sexual development.

In the beginning – in terms of their sexual organs – all embryos look alike, said Illinois veterinary biosciences professor Humphrey Yao, who led the study.

"They have a common primordium, the foundation for both testis and ovary," he said. "Only at a certain stage of development does this primordium start to follow a different path."

In the early days of research into sexual development, it was thought that all females had two X chromosomes, all males had an X and a Y, and that the Y made all the difference. Unless it had a Y chromosome, an embryo developed ovaries and became female, more or less by default, scientists thought. They even found a specific gene on the Y chromosome, called SRY (for sex-determining region of the Y chromosome) that appeared to be essential for testes formation.

But when researchers discovered some rare cases of individuals who developed testes even though they had two X chromosomes and no Y chromosome or SRY gene, they realized that the mechanisms of sex determination were more complex than previously thought.

This led to a new theory, called the "Z" hypothesis, which proposed that testes development was actually the default pathway. According to this theory, an unknown gene or process, called "Z," could disrupt this pathway and lead to the development of ovaries.

The "Z" hypothesis explained why SRY appeared essential for testes development. When it is present, SRY suppresses "Z" and allows the default option (development of testes) to occur.

This theory was complex and ambiguous, however, leading some to reject it.

Yao and graduate student Chia-Feng Liu wanted to investigate a particular player in the cast of molecules known to be involved in transforming the primordium into testis or ovary. This molecule, beta-catenin, is an important regulator of cell proliferation and differentiation. When it functions as a transcription factor, it turns other genes on or off. Without beta-catenin, which is expressed in many organs and tissues, an embryo will not survive.

Yao and Liu knew that other proteins also were critical to the development of ovaries in particular. Mice that lacked the genes for a signaling protein, known as Wnt4, or another secreted protein, called R-spondin1, experienced a partial female-to-male sex reversal: They formed ovaries, but with male characteristics, such as blood-vessel structures like those in testes. Humans with mutations in their WNT4 and R-spondin1 genes had similar malformations of the sex organs.

Other studies had indicated that beta-catenin was important to the action of Wnt4 and R-spondin1 in various tissues. But no studies had found direct genetic proof that beta-catenin was involved in regulating how the ovaries developed.

To determine whether beta-catenin had a role in forming the ovaries, the researchers developed a mouse embryo in which the beta-catenin gene could be shut off at the earliest stage of development of the gonads while remaining functional in other organs.

"To our surprise, the ovaries still formed," Yao said. But male sexual structures also appeared, creating an amalgamation of male and female sexual structures that looked very much like those produced when the Wnt4 or R-spondin1 genes were mutated or missing.

"That tells us very conclusively that beta-catenin is an internal regulator of this pathway," Yao said.

To see how the absence of beta-catenin would affect testes formation, the researchers repeated the experiment in embryos in the early stages of testes development.

"When we looked at the testes without beta-catenin," Yao said, "they developed just fine."

The results were so unexpected that the researchers conducted the experiment again and again to test their findings.

"When I looked at the results in the testes I couldn't believe it. How could such an important gene like beta-catenin function differently in males and females?" Yao said.

When beta-catenin acts as a transcription factor it goes into the nucleus of the cell to interact with the DNA. The proteins, Wnt4 and R-spondin1 (and another one, called follistatin, which is also an important player in this pathway), are all secreted proteins. They are emitted from the cell, Yao said, and yet it appears that their production or secretion relies on an intracellular protein, beta-catenin.

"Wnt4, R-spondin1, follistatin – these genes all code for secreted proteins," Yao said. "How does the cell know to respond to this signal? And how can secreted factors change the fate of an organism?"

Yao said his team's findings provided some support for the "Z" hypothesis, with beta-catenin acting as a vital intermediary in a pathway that includes Wnt4 and R-spondin1 to suppress the development of male sex organs.

This study was supported in part by the National Institutes of Health and the March of Dimes Foundation.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Female Embryonic Sexual Development Driven By Universal Factor." ScienceDaily. ScienceDaily, 17 November 2008. <www.sciencedaily.com/releases/2008/11/081113140325.htm>.
University of Illinois at Urbana-Champaign. (2008, November 17). Female Embryonic Sexual Development Driven By Universal Factor. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/11/081113140325.htm
University of Illinois at Urbana-Champaign. "Female Embryonic Sexual Development Driven By Universal Factor." ScienceDaily. www.sciencedaily.com/releases/2008/11/081113140325.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins