Featured Research

from universities, journals, and other organizations

Genomic Signature Of Colon Cancer May Individualize Treatment

Date:
December 2, 2008
Source:
Duke University Medical Center
Summary:
Researchers have developed a model for predicting risk of recurrence in early stage colon cancer patients, and have used the model to also predict sensitivity to chemotherapy and targeted therapy regimens.

Researchers in the Duke Institute for Genome Sciences & Policy have developed a model for predicting risk of recurrence in early stage colon cancer patients, and have used the model to also predict sensitivity to chemotherapy and targeted therapy regimens.

"These findings have important implications for individualizing therapy," said Katherine Garman, M.D., a gastroenterology fellow at Duke and lead investigator on the study. "By examining gene expression in early-stage colon cancer tumors, we have found certain patterns that seem to put some patients at higher risk for recurrence. By identifying these patients up front, we may be able to treat them in a targeted and proactive manner to prevent this recurrence and help them live longer and healthier lives."

The findings are due to appear in the online edition of the Proceedings of the National Academy of Sciences, between November 24 and November 26, 2008. The study was funded by the Emilene Brown Cancer Research Fund and the National Institutes of Health.

The researchers studied gene expression data from 52 samples of early stage colon cancer tumors, looking for patterns. Then they correlated the gene expression patterns with patient progress reports to track the recurrence of cancer. The predictive power of the correlations was subsequently tested in two independent data sets from 55 and 73 tumors, respectively.

"In our small dataset, we were able to predict which tumors were at risk for recurring, with 90 percent accuracy," Garman said.

In collaboration with colon cancer specialist David Hsu, M.D., the researchers then took their study one very significant step further, using the data garnered about gene expression and prognosis to examine response to several different types of therapy.

"Importantly, we found that the traditional chemotherapy given to patients with colon cancer varies considerably in its ability to treat tumors with a high likelihood of cancer recurrence," Garman said. "Using the gene-expression data to guide us, we then identified several other drugs and tested those drugs in our samples. The drugs chosen were novel targeted therapies and anti-inflammatory agents that go after certain cancer cell pathways and had been previously shown to alter colon cancer biology."

"Two of the drugs we tested seemed to cause significant changes in tumor biology in a laboratory dish, effectively making a high-recurrence-risk tumor into a low-recurrence-risk tumor by altering the genetic makeup," Garman said. "These therapies would need to be tested further in a clinical trial."

Conventional methods of characterizing tumors currently rely on pathological information such as tumor size, lymph node involvement and degree of metastasis, Garman said. Doctors use these kinds of clinical data to determine whether an early stage colon cancer patient receives chemotherapy after surgery, and if so, what type.

"Integration of genomic and genetic markers will revolutionize the way we care for patients," Garman said.

"This is a perfect example of how science can change the way cancer care is practiced," said Anil Potti, M.D., a researcher in the Duke Institute for Genome Sciences & Policy and senior investigator on this study. "We hope that advances such as this will individualize the treatment plans for patients with colon cancer and improve survival."

About 150,000 people are diagnosed with colorectal cancer each year in the United States and almost 50,000 are expected to die of the disease in 2008. Up to 30 percent of patients diagnosed with early stage colon cancer can go on to experience recurrences despite initial cure with surgery and chemotherapy when indicated.

Other researchers involved in this study include Elena Edelman, Chaitanya Acharya, Shivani Sud, William Barry, Anna Mae Diehl, Dawn Provenzale, Geoffrey Ginsburg, Joseph Nevins, and Sayan Mukherjee of the Duke Institute for Genome Sciences & Policy; Marian Grade and Thomas Ried of the National Cancer Institute; and Jochen Gaedcke of Georg-August-University Gottingen, in Germany.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Genomic Signature Of Colon Cancer May Individualize Treatment." ScienceDaily. ScienceDaily, 2 December 2008. <www.sciencedaily.com/releases/2008/11/081124174857.htm>.
Duke University Medical Center. (2008, December 2). Genomic Signature Of Colon Cancer May Individualize Treatment. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2008/11/081124174857.htm
Duke University Medical Center. "Genomic Signature Of Colon Cancer May Individualize Treatment." ScienceDaily. www.sciencedaily.com/releases/2008/11/081124174857.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins