Featured Research

from universities, journals, and other organizations

Novel Approach For Suppressing Prostate Cancer Development

Date:
November 25, 2008
Source:
University of Southern California
Summary:
Researchers have found that inactivating a specific biomarker for aggressive prostate cancer blocks the development of prostate cancer in animal models.

Researchers at the University of Southern California (USC) have found that inactivating a specific biomarker for aggressive prostate cancer blocks the development of prostate cancer in animal models.

Related Articles


Researchers say the upcoming study in the Proceedings of the National Academy of Sciences—now available online—may lead to a novel cancer therapy for humans.

"This research has far-reaching implications in a wide range for human cancers," says Amy Lee, Ph.D., the study's principal investigator and the associate director for basic research and holder of the Freeman Cosmetics Chair at the USC/Norris Comprehensive Cancer Center, and professor of biochemistry and molecular biology at the Keck School of Medicine of USC. "It is a breakthrough study."

Prostate cancer is the most common cancer in men and develops through successive stages. The glucose-regulated protein GRP78 has been identified as a crucial entity in the development of prostate cancer by promoting cancer cell proliferation, mediating oncogenic signaling and protecting cancer cells against cell death resulting from the stress of tumor development, Lee explains. By suppressing GRP78 expression or activity, the USC researchers found that they could block prostate cancer activation and development resulting from the loss of PTEN, a powerful tumor suppressor gene for a number of human cancers.

Researchers spent more than three years monitoring prostate cancer development in animal models that had been genetically engineered to have both the GRP78 and PTEN tumor suppressor genes inactivated. The research was conducted by Yong Fu, a Ph.D. candidate at the Keck School of Medicine of USC and the first author on the study, in collaboration with Ph.D candidates Shiuan Wey, Miao Wang, Risheng Ye and Chun-Peng Liao and Pradip Roy-Burman, M.D., professor of pathology, biochemistry and molecular biology at the Keck School.

Future research should test the role of GRP78 in other types of cancer and isolate drugs that inhibit GRP78, Lee says. "To our knowledge, this is the first demonstration that inactivation of a specific molecular chaperone from the mouse prostate epithelial cells can potently block prostate cancer development and suppress the activation of AKT, which is a protein kinase that promotes cell proliferation and survival and is a major factor in many types of cancer," Lee says. "With the recent advances in identifying agents that suppress GRP78 expression, anti-GRP78 therapy may open up an entirely new approach to stop human cancer."

The study was funded by a grant from the National Cancer Institute that has been awarded to Amy Lee for the past 28 years.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yong Fu, Shiuan Wey, Miao Wang, Risheng Ye, Chun-Peng Liao, Pradip Roy-Burman, and Amy S. Lee. Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proceedings of National Academy of Sciences, Nov. 2008

Cite This Page:

University of Southern California. "Novel Approach For Suppressing Prostate Cancer Development." ScienceDaily. ScienceDaily, 25 November 2008. <www.sciencedaily.com/releases/2008/11/081124174905.htm>.
University of Southern California. (2008, November 25). Novel Approach For Suppressing Prostate Cancer Development. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2008/11/081124174905.htm
University of Southern California. "Novel Approach For Suppressing Prostate Cancer Development." ScienceDaily. www.sciencedaily.com/releases/2008/11/081124174905.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins