Featured Research

from universities, journals, and other organizations

Strangulation Of Spiral Galaxies: ‘Missing Link’ Discovered

Date:
November 25, 2008
Source:
Royal Astronomical Society (RAS)
Summary:
Astronomers have uncovered a type of galaxy that represents a missing link in our understanding of galaxy evolution. Galaxy Zoo, which uses volunteers from the general public to classify galaxies, and the Space Telescope A901/902 Galaxy Evolution Survey (STAGES) projects have used their vast datasets to disentangle the roles of "nature" and "nurture" in changing galaxies from one variety to another.

These images of three galaxies from the Galaxy Zoo (top) and STAGES surveys (bottom) show examples of how the newly discovered population of red spiral galaxies on the outskirts of crowded regions in the Universe may be a missing link in our understanding of galaxy evolution. At left, both surveys find examples of normal spiral galaxies displaying all the hallmarks of youth: blue in colour, they are disk-like in structure. The obvious spiral arms host knotty structures where large numbers of hot young stars are being born. On the right are examples of typical rounded balls of stars known as elliptical galaxies. The reddish colour indicates that their stars are mostly old. With no gas left to use as fuel to form any more, they are old, dead and red In the centre are examples of the new "red spiral" galaxy found in large numbers by both the STAGES and Galaxy Zoo collaborations. While still disk-like and recognizably spiral in shape, their spiral arms are smoother. Furthermore, their colour is as red as the ellipticals. Astronomers from both teams believe these red spirals are objects in transition, where star formation has been shut off by interactions with the environment.
Credit: STAGES image credit: Marco Barden, Christian Wolf, Meghan Gray, the STAGES survey; STAGES image from Hubble Space Telescope, colour from COMBO-17 survey; Galaxy Zoo image credit: Sloan Digital Sky Survey

Astronomers in two UK-led international collaborations have separately uncovered a type of galaxy that represents a missing link in our understanding of galaxy evolution.

Galaxy Zoo, which uses volunteers from the general public to classify galaxies, and the Space Telescope A901/902 Galaxy Evolution Survey (STAGES) projects have used their vast datasets to disentangle the roles of "nature" and "nurture" in changing galaxies from one variety to another.

Both studies have identified a population of unusual red spiral galaxies that are setting out on the road to retirement after a lifetime of forming stars. Crucially, nature and nurture appear to play a role in this transformation: both the mass of a galaxy as well as its local environment are important in determining when and how quickly its star formation is shut down. The scientists’ work appears together in a forthcoming edition of Monthly Notices of the Royal Astronomical Society.

Astronomers place most normal galaxies into two camps according to their visual appearance: either disk-like systems like our own Milky Way, or round, rugby-ball shaped collections of stars known as ellipticals. In most cases, a galaxy's shape matches its colour: spiral galaxies appear blue because they are still vigorously forming hot young stars. Elliptical galaxies, on the other hand, are mostly old, dead, and red, and tend to cluster together in crowded regions of space.

The Galaxy Zoo team examined the connection between the shapes and colours of over one million galaxies using images from the largest ever survey of the local Universe, the Sloan Digital Sky Survey and the help of hundreds of thousands of volunteers from the general public. A key ingredient to their success was reliably classifying the appearance of galaxies by actually looking at them, rather than relying on error-prone computer measurements.

Surprisingly, they find that many of the red galaxies in crowded regions are actually spiral galaxies, bucking the trend for red galaxies to be elliptical in shape. These red spiral galaxies may be just the smoking gun astronomers have been looking for.

Dr. Steven Bamford, an STFC postdoctoral researcher at the University of Nottingham, led the Galaxy Zoo study. "In order to have spiral arms, they must have been normal, blue, spiral galaxies up until fairly recently. But for some reason their star formation has been stopped, and they have turned red. Whatever caused them to stop forming stars can't have been particularly violent, or it would have destroyed the delicate spiral pattern." The Galaxy Zoo team concludes that a more subtle process must be at work, one that kills off star formation but does not disrupt the overall shape of the galaxy.

While Galaxy Zoo looked at the gross properties of millions of galaxies across a large chunk of sky, the STAGES project took a complementary approach by examining in detail just the sort of neighbourhoods where these transformations are expected to occur. Dr. Christian Wolf, an STFC Advanced Research Fellow at the University of Oxford, trained the Hubble Space Telescope on a region of space crowded with galaxies known as the A901/902 supercluster. Like the Galaxy Zoo team, Dr. Wolf also uncovered a surprisingly large population of spiral galaxies in the supercluster that are red in colour.

So has the star formation in these red spiral galaxies been completely killed off? The answer is no: despite their colour, the red spirals are actually hiding star formation behind a shroud of dust. Invisible to our (or Hubble's) eye, this star formation is only detectable in the infrared part of the spectrum i.e. radiation emitted from the galaxies at wavelengths longer than visible light.

Dr. Wolf remarks, "For the STAGES galaxies, the Spitzer Space Telescope provided us with additional images at infrared wavelengths. With them, we were able to go further and peer through the dust to find the missing piece of the puzzle". Within the supercluster, Dr. Wolf discovered that the red spirals were hiding low levels of hidden star formation, despite their otherwise lifeless appearance in visible light.

Putting the observations from both projects together, the picture that emerges is a gentle one: the star formation in blue spiral galaxies is gradually shut off and hidden behind dust, before petering out to form smooth "lenticular" (lens-shaped) red galaxies with no trace of spiral arms. To go further and transform the galaxy into an elliptical would require more violent mechanisms, such as the wholesale collision of galaxies.

Location is key: the red spirals are found primarily on the outskirts of crowded regions of space where galaxies cluster together. As a blue galaxy is drawn in by gravity from the rural regions to the suburbs, an interaction with its environment causes a slow-down in star formation. The closer in a galaxy is, the more it is affected.

But if environment decides where the process occurs, the mass of the galaxy decides how quickly it takes place. Because both STAGES and Galaxy Zoo looked at such large numbers of galaxies, they were able to further subdivide them according to how much they weighed. Sure enough, both groups find that galaxy mass is also important. Professor Bob Nichol of Portsmouth University, a Galaxy Zoo team member, explains: "Just as a heavyweight fighter can withstand a blow that would bring a normal person to his knees; a big galaxy is more resistant to being messed around by its local environment. Therefore, the red spirals that we see tend to be the larger galaxies - presumably because the smaller ones are transformed more quickly."

Chris Lintott, Galaxy Zoo team leader at the University of Oxford, pays tribute to the role of the general public in the Galaxy Zoo research. "These results are possible thanks to a major scientific contribution from our many volunteer armchair astronomers. No group of professionals could have classified this many galaxies alone."

Meghan Gray, STFC Advanced Fellow at the University of Nottingham and leader of the STAGES survey, comments on the agreement of the two projects on the role of environment and mass: "Our two projects have approached the problem from very different directions, and it is gratifying to see that we each provide independent pieces of the puzzle pointing to the same conclusion.”

The next step for both teams is to find out exactly what shuts off the star formation, by looking inside the galaxies themselves. One suspect behind the slow demise of galaxies is a process known as strangulation, in which a galaxy's fuel supply is stripped away as it encounters the crowd. Starved of the raw material needed to form new stars, it will slowly change colour from blue to red as its existing stars age.


Story Source:

The above story is based on materials provided by Royal Astronomical Society (RAS). Note: Materials may be edited for content and length.


Cite This Page:

Royal Astronomical Society (RAS). "Strangulation Of Spiral Galaxies: ‘Missing Link’ Discovered." ScienceDaily. ScienceDaily, 25 November 2008. <www.sciencedaily.com/releases/2008/11/081124194936.htm>.
Royal Astronomical Society (RAS). (2008, November 25). Strangulation Of Spiral Galaxies: ‘Missing Link’ Discovered. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2008/11/081124194936.htm
Royal Astronomical Society (RAS). "Strangulation Of Spiral Galaxies: ‘Missing Link’ Discovered." ScienceDaily. www.sciencedaily.com/releases/2008/11/081124194936.htm (accessed April 23, 2014).

Share This



More Space & Time News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nuclear-Level Asteroids Might Be More Common Than We Realize

Nuclear-Level Asteroids Might Be More Common Than We Realize

Newsy (Apr. 23, 2014) The B612 Foundation says asteroids strike Earth much more often than previously thought, and are hoping to build an early warning system. Video provided by Newsy
Powered by NewsLook.com
NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Nasa Gives You An Excuse to Post a Selfie on Earth Day

Nasa Gives You An Excuse to Post a Selfie on Earth Day

TheStreet (Apr. 22, 2014) NASA is inviting all social media users to take a selfie of themselves alongside nature and to post it to Twitter, Facebook, Flickr, Instagram, or Google Plus with the hashtag #globalselfie. NASA's goal is to crowd-source a collection of snapshots of the earth, ground-up, that will be used to create one "unique mosaic of the Blue Marble." This image will be available to all in May. Since this is probably one of the few times posting a selfie to Twitter won't be embarrassing, we suggest you give it a go for a good cause. Video provided by TheStreet
Powered by NewsLook.com
SpaceX's Dragon Spacecraft Captured by International Space Station

SpaceX's Dragon Spacecraft Captured by International Space Station

Reuters - US Online Video (Apr. 20, 2014) SpaceX's unmanned Dragon spacecraft makes a scheduled Easter Sunday rendezvous with the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins