Featured Research

from universities, journals, and other organizations

New 'Control Knobs' For Stem Cells: Changes In Membrane Voltage Control Timing Of Differentiation

Date:
December 5, 2008
Source:
Tufts University
Summary:
Natural changes in voltage that occur across the membrane of adult human stem cells act as a signal to delay or accelerate the decision of a stem cell to differentiate into a specific cell type. This discovery gives scientists in regenerative medicine a new set of "control knobs" to use in ongoing efforts to shape the behavior of adult stem cells.

Natural changes in voltage that occur across the membrane of adult human stem cells are a powerful controlling factor in the process by which these stem cells differentiate, according to research published by Tufts University scientists.

Tufts doctoral student Sarah Sundelacruz, Professor of Biology Michael Levin, and Chair of Biomedical Engineering David L. Kaplan (corresponding author) published their paper "Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells" in the November 17, 2008, issue of PLoS ONE.

"We have found that voltage changes act as a signal to delay or accelerate the decision of a stem cell to drop out of a stem state and differentiate into a specific cell type. This discovery gives scientists in regenerative medicine a new set of control knobs to use in ongoing efforts to shape the behavior of adult stem cells," said Levin. "In addition, by uncovering a new mechanism by which these cells are controlled in the human body, this research suggests potential future diagnostic applications."

Harnessing the potential of stem cells for applications such as wound healing and tissue regeneration is a tantalizing yet daunting task. Although many studies indicate that electrophysiology plays a crucial role in cell proliferation and differentiation, its functional role in stem cell biology is poorly understood.

The Tufts researchers studied the changes in membrane potential (voltage across the membrane) shown by human mesenchymal stem cells (hMSCs) obtained from donor bone marrow as the hMSCs were differentiating into fat and bone cells. They found that hyperpolarization (increased difference between the voltage in the interior and exterior of a cell) was characteristic of differentiated cells compared with undifferentiated cells and that hMSCs show different membrane potential profiles during bone vs. fat differentiation.

To determine whether hyperpolarization was functionally required for differentiation, the scientists depolarized the hMSCs by exposing them either to high levels of extracellular potassium ions or to ouabain, a compound that blocks the transfer of ions in and out of cells. Both treatments disrupted the normal increase in negative voltage that occurs during differentiation and suppressed fat and bone cell differentiation markers.

In contrast, treatment with hyperpolarizing reagents up-regulated bone cell markers – indicating that voltage changes are not merely permissive for differentiation but can act as an instructive signal to either induce or inhibit differentiation.

More study is needed to determine whether hyperpolarization also determines which specific type of cell stem cells will differentiate into, according to the Tufts researchers.

Funding for the study came from the National Science Foundation through the Graduate Research Fellowship Program, the National Institutes of Health through the Tissue Engineering Resource Center, the National Highway Traffic Safety Administration and the U.S. Defense Advanced Research Projects Agency.


Story Source:

The above story is based on materials provided by Tufts University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sundelacruz S, Levin M, Kaplan DL. Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE, 2008; 3(11): e3737 DOI: 10.1371/journal.pone.0003737

Cite This Page:

Tufts University. "New 'Control Knobs' For Stem Cells: Changes In Membrane Voltage Control Timing Of Differentiation." ScienceDaily. ScienceDaily, 5 December 2008. <www.sciencedaily.com/releases/2008/12/081203101515.htm>.
Tufts University. (2008, December 5). New 'Control Knobs' For Stem Cells: Changes In Membrane Voltage Control Timing Of Differentiation. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2008/12/081203101515.htm
Tufts University. "New 'Control Knobs' For Stem Cells: Changes In Membrane Voltage Control Timing Of Differentiation." ScienceDaily. www.sciencedaily.com/releases/2008/12/081203101515.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins