Featured Research

from universities, journals, and other organizations

'Zinc Zipper' Plays Key Role In Hospital-acquired Infections

Date:
December 6, 2008
Source:
University of Cincinnati
Summary:
Scientists are exploring a "zinc zipper" that holds bacterial cells together and plays a key role in hospital-acquired infections.

Andrew Herr, PhD, and co-first authors Deborah Conrady and Cristin Brescia, PhD.
Credit: Image courtesy of University of Cincinnati

Hospital-acquired infections that are resistant to traditional antibiotic treatment have become increasingly common in recent years, confounding health care professionals and killing thousands of Americans.

Now, in studies that could lead to new ways to prevent this growing public health danger, a team of University of Cincinnati (UC) researchers is exploring a “zinc zipper” that holds bacterial cells together and plays a key role in such infections.

Hospital-acquired infections affect about 1.7 million people per year in the United States and result in an estimated 99,000 deaths annually, according to the Centers for Disease Control. About two-thirds of all hospital-acquired infections can be traced to two staphylococcal species, Staphylococcus aureus—including methicillin-resistant strains (MRSA) that are particularly difficult to treat—and Staphylococcus epidermidis.

In an article appearing in the Dec. 1 online edition of Proceedings of the National Academy of Sciences, researchers in UC’s department of molecular genetics, biochemistry and microbiology detailed findings that the presence of zinc is crucial to the formation of infection-causing biofilms.

Staphylococci can grow as biofilms, which are specialized communities of bacteria that are highly resistant to antibiotics and immune responses. They are remarkably adhesive and can grow on many surfaces, including implanted medical devices such as pacemakers, heart valve replacements and artificial joints. Preventing or inhibiting the growth of such biofilms would dramatically reduce the incidence of staph infections.

UC researchers in the lab of Andrew Herr, PhD, an assistant professor and Ohio Eminent Scholar in structural biology, found that zinc causes a protein on the bacterial surface to act like molecular Velcro, allowing the bacterial cells in the biofilm to stick to one another. Zinc chelation, or removal, prevented biofilm formation by Staphylococcus epidermidis and Staphylococcus aureus. The researchers used a chelation agent called DTPA (diethylenetriamine pentaacetic acid) to remove the zinc from a sample biofilm.

“We’ve shown that if you remove the zinc, you prevent the biofilm from forming, and if you add zinc back, the biofilm can grow,” says Herr. “So we’re hopeful that we can use this sort of approach to prevent these biofilms from ever taking hold in the first place.”

The most practical applications, Herr says, might involve coatings for implanted medical devices, or rinses that a surgeon could use to clear the area around the implant.

Systemic removal of zinc, such as through an intravenous injection, is impractical for now because DTPA is approved by the U.S. Food and Drug Administration only for people with radio isotope poisoning. In addition, zinc is known to activate immune cells and play many other important roles in the body, so a proper balance would need to be developed.

Herr had access to funds from the Ohio Eminent Scholars Program and also received a pilot grant from the Cincinnati Microbial Pathogenesis Center for the study. He intends to apply for a National Institutes of Health grant in 2009 to continue his research.

The research team, in addition to Herr, consisted of graduate student Deborah Conrady; postdoctoral fellows Cristin Brescia, PhD, and Katsunori Horii, PhD; and UC molecular genetics, biochemistry and microbiology professors Alison Weiss, PhD, and Daniel Hassett, PhD.


Story Source:

The above story is based on materials provided by University of Cincinnati. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati. "'Zinc Zipper' Plays Key Role In Hospital-acquired Infections." ScienceDaily. ScienceDaily, 6 December 2008. <www.sciencedaily.com/releases/2008/12/081204160602.htm>.
University of Cincinnati. (2008, December 6). 'Zinc Zipper' Plays Key Role In Hospital-acquired Infections. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2008/12/081204160602.htm
University of Cincinnati. "'Zinc Zipper' Plays Key Role In Hospital-acquired Infections." ScienceDaily. www.sciencedaily.com/releases/2008/12/081204160602.htm (accessed April 17, 2014).

Share This



More Plants & Animals News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins