Featured Research

from universities, journals, and other organizations

Researcher Nabs Doubly Magic Tin Isotope, A North American First

Date:
December 24, 2008
Source:
National Superconducting Cyclotron Laboratory at Michigan State University
Summary:
Researchers have been able to make first-of-its-kind measurements of several rare nuclei, one of which has been termed a "holy grail" of experimental nuclear physics.

NSCL senior physicist Daniel Bazin adjusts the laboratory's National Science Foundation-funded radio frequency fragment separator, which allows boosts the ability to to search for proton-rich rare isotopes.
Credit: Greg Kohuth/MSU

With help from newly developed equipment designed and built at Michigan State University, MSU researchers have been able to make first-of-its-kind measurements of several rare nuclei, one of which has been termed a “holy grail” of experimental nuclear physics.

The discoveries, made at MSU’s National Superconducting Cyclotron Laboratory using an isotope purification device, will help to refine theoretical models about how elements are created in the cosmos. Until now, this was beyond the technical reach of nearly all of the world's nuclear science facilities.

To be published December 12 in Physical Review Letters, the paper details how the researchers were able to measure the nuclei of tin, cadmium and indium.

"Tin-100, in particular, has been sort of a holy grail of experimental nuclear physics," said NSCL senior physicist Daniel Bazin of one of the isotopes, with 50 protons and 50 neutrons, described in the paper.

Within nuclear science, 50 is considered "magic" because it's one of a handful of numbers associated with extra stability. The other magic numbers are 2, 8, 20, 28, 82 and 126.

It takes a magic number of protons or neutrons to fill the nested energetic shells that form the nucleus like stacking Russian matryoshka dolls. To understand the concept, consider that each carved doll similarly has a magic number of marbles that precisely and completely fills the hollow interior. And just as a doll full of marbles neatly packed together is probably sturdier than one that's only half or a quarter full, so too is a closed-shell nucleus more stable than its counterparts.

Tin-100 is one of the few “doubly magic” nuclei with magic numbers of both protons and neutrons. Such nuclei are generally far more stable than other particles, especially at the fleeting, shape-shifting edge of nuclear existence. Because of this stability, doubly magic nuclei serve as useful semi-permanent signposts to rare isotope researchers who troll the unexplored terrain of the nuclear landscape seeking to answer basic questions about the structure of nuclear matter and processes that create chemical elements inside stars.

The new experimental device, the radio frequency fragment separator, provides at least a hundredfold boost to NSCL's ability to filter out the few exotic isotopes from the vast sea of other particles produced by its coupled superconducting cyclotrons and downstream magnets. Funding for the equipment was provided by the National Science Foundation.

This newfound filtering ability resulted in the first production and measurement in North America of tin-100, which has been eagerly pursued by experimentalists since at least the mid-1990s. GSI in Germany and GANIL in France are the only other nuclear science facilities in the world to have successfully produced and studied the rare, proton-rich isotope of tin, an element extensively used for thousands of years in everything from ancient spears and knives to cars and modern electronics.

In their paper, a draft version of which is available online on the arxiv.org preprint server, Bazin and his collaborators also report the measurement of half-lives of the cadmium-96 (48 protons and 48 neutrons) and indium-98 (49 protons and 49 neutrons) isotopes.

The announcement of the observation of the three rare isotopes builds on recent NSCL success in creating nuclear matter that otherwise only exists in extreme environments in space, such as exploding stars. In fall 2007, the laboratory reported the discovery of three neutron-rich isotopes of magnesium and aluminum in the journal Nature.


Story Source:

The above story is based on materials provided by National Superconducting Cyclotron Laboratory at Michigan State University. Note: Materials may be edited for content and length.


Cite This Page:

National Superconducting Cyclotron Laboratory at Michigan State University. "Researcher Nabs Doubly Magic Tin Isotope, A North American First." ScienceDaily. ScienceDaily, 24 December 2008. <www.sciencedaily.com/releases/2008/12/081210145307.htm>.
National Superconducting Cyclotron Laboratory at Michigan State University. (2008, December 24). Researcher Nabs Doubly Magic Tin Isotope, A North American First. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2008/12/081210145307.htm
National Superconducting Cyclotron Laboratory at Michigan State University. "Researcher Nabs Doubly Magic Tin Isotope, A North American First." ScienceDaily. www.sciencedaily.com/releases/2008/12/081210145307.htm (accessed September 1, 2014).

Share This




More Matter & Energy News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins