Featured Research

from universities, journals, and other organizations

Molecules In The Spotlight

Date:
December 16, 2008
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
A novel x-ray technique allowing the observation of molecular motion on a time scale never reached before has just been developed. This discovery opens promising prospects for the study of chemical and biological systems.

A novel x-ray technique allowing the observation of molecular motion on a time scale never reached before has been developed by a team of researchers from EPFL and the Paul Scherrer Institute (PSI) in Switzerland. Results of the research led by Professor Majed Chergui, head of EPFL’s laboratory of Ultrafast Spectroscopy in collaboration with the FEMTO group at PSI appear online December 11 in the journal Science.

Related Articles


This discovery opens promising prospects for the study of chemical and biological systems. It allows a better understanding of the structural evolution of molecules during a chemical reaction. The researchers have applied it to the study of metal-based molecular complexes, of high interest in chemistry. This could lead to applications in magnetic data storage or solar energy. It also opens new perspectives in biology, because the molecules studied are analogous to the active center in hemoproteins (haemoglobin, myoglobin).

Structural evolution

It is possible to follow a cat landing on its feel in “real time” using a camera with shutter times on the order of tens of milliseconds. To do the same with molecules, 100 000 million times smaller than cats, requires shutter times that are 100 000 million times faster -- a few tens of femtoseconds (1 femtosecond is to a second what a second is to 32 million years).

Although there are lasers that permit such shutter speeds, no existing optical methods can capture the molecular structure. In order to overcome this limitation, Chergui’s team combined lasers delivering femtosecond pulses of ultraviolet-visible light with a source of femtosecond X-ray pulses, in a technique now known as ultrafast X-Ray Absorption Spectroscopy. “With the extremely short wavelengths of this kind of pulsed radiation, it is possible to observe the molecular structure changes, and thus to obtain precise information about the breaking, the formation, or the transformation of chemical bonds between atoms. And all this, in real time,” explains Chergui.

To reach this degree of precision, the researchers needed a source of stable and tunable femtosecond X-Ray pulses. They found it at the Paul Scherrer Institute in Villigen, Switzerland, in a collaboration with Dr. Rafael Abela’s team. Using the femtosecond X-ray pulses extracted from the Swiss Light Source synchrotron in a technique developed at the PSI, the researchers were able to follow in real time a structural change of the molecule in 150 femtoseconds. This method is an excellent tool for analysing reactions in liquid and disordered environments that characterize many biological and chemical systems.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Molecules In The Spotlight." ScienceDaily. ScienceDaily, 16 December 2008. <www.sciencedaily.com/releases/2008/12/081212101539.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2008, December 16). Molecules In The Spotlight. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2008/12/081212101539.htm
Ecole Polytechnique Fédérale de Lausanne. "Molecules In The Spotlight." ScienceDaily. www.sciencedaily.com/releases/2008/12/081212101539.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) — US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins