Featured Research

from universities, journals, and other organizations

Blocking Molecular Pathway With Whimsical Name Possible Therapeutic Target For Pancreatic Cancer

Date:
December 19, 2008
Source:
American Society for Cell Biology
Summary:
A possible new therapeutic target for pancreatic cancer, the most lethal form of human cancer, has been identified in the proteins whose DNA recipe comes from the gene, "Seven-In-Absentia."

A possible new therapeutic target for pancreatic cancer, the most lethal form of human cancer, has been identified in the proteins whose DNA recipe comes from gene, "Seven-In-Absentia," according to researchers at the American Society for Cell Biology (ASCB) 48th Annual Meeting, Dec. 13-17, 2008 in San Francisco.

Related Articles


In their studies with the fruit fly, Drosophila melanogaster, at the Mayo Clinic College of Medicine in Minnesota, scientists found a link between the "Seven-In-Absentia" or SINA gene and the aggressive cellular transformation, oncogenesis and metastasis that characterize pancreatic cancer.

Scientists already knew that a mutation in the K-RAS gene underlies the abnormal, excessive cell growth of pancreatic cancer.

Because the mutated form of this growth-promoting gene is hyperactivated, a major signaling pathway that drives cell growth is in over-drive in most patients with this cancer.

The "Seven-In-Absentia-Homolog" (SIAH) protein seems to work as a check and balance mechanism in the K-RAS pathway by chewing up and turning off the excessive growth-promoting proteins produced by the hyperactive, mutated form of the gene, says Amy Tang whose Mayo lab conducted the research.

"By attacking the SIAH-based protein degrading machinery, we block tumor formation in one of the most aggressive human cancers cells known," she reports.

Because of these results, SIAH may be an attractive new target for novel anti-RAS and anti-cancer therapy in pancreatic cancer, the median survival of which is only six months, and the mortality rate is 95 percent.

By inhibiting SIAH function, Tang and her colleagues were able to completely abolish both tumorigenesis and metastasis of human pancreatic cancer cells that were growing in "nude" mice that have immune system deficits that prevent them from rejecting foreign tissue.

"It is likely to move into the clinical setting for study as an interventional treatment in pancreatic cancer in human patients," Tang says, referring to the SIAH inhibition.

SINA produces a family of RING domain E3 ubiquitin ligases. In all creatures, ubiquitin ligases turn cell pathways on or off by degrading proteins.

In humans, the SIAH ubiquitin ligases sit smack in the middle of the molecular pathway that leads to pancreatic cancer, Tang explains.

The Tang lab found that SIAH ubiquitin ligases were specifically and markedly "upregulated" in pancreatic cancers.

The increased SIAH expression seemed to correlate with increased grades and aggressiveness of pancreatic cancer. Moreover, SIAH is normally required for mammalian K-RAS signal transduction.

Authors are R.L. Schmidt, A.H. Tang, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN; 
C.H. Park, A.U. Ahmed, N.R. Reed, J.H. Gundelach, B.E. Knudsen, A.H. Tang, Surgery, Mayo Clinic College of Medicine, Rochester, MN. An author presented Poster B678, "Inhibition of K-RAS-Mediated Tumorigenesis and Metastasis by Blocking SIAH E3 ligase-Dependent Proteolysis in Pancreatic Cancer," on Dec. 14 at the Moscone Center.


Story Source:

The above story is based on materials provided by American Society for Cell Biology. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Cell Biology. "Blocking Molecular Pathway With Whimsical Name Possible Therapeutic Target For Pancreatic Cancer." ScienceDaily. ScienceDaily, 19 December 2008. <www.sciencedaily.com/releases/2008/12/081214190940.htm>.
American Society for Cell Biology. (2008, December 19). Blocking Molecular Pathway With Whimsical Name Possible Therapeutic Target For Pancreatic Cancer. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2008/12/081214190940.htm
American Society for Cell Biology. "Blocking Molecular Pathway With Whimsical Name Possible Therapeutic Target For Pancreatic Cancer." ScienceDaily. www.sciencedaily.com/releases/2008/12/081214190940.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

AFP (Jan. 29, 2015) Oxfam International has called for a multi-million dollar post-Ebola "Marshall Plan", with financial support given by wealthy countries, to help Guinea, Sierra Leone and Liberia to recover. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Are We Winning The Fight Against Ebola?

Are We Winning The Fight Against Ebola?

Newsy (Jan. 29, 2015) The World Health Organization announced the fight against Ebola has entered its second phase as the number of cases per week has steadily dropped. Video provided by Newsy
Powered by NewsLook.com
Calif. Health Officials Campaign Against E-Cigarettes

Calif. Health Officials Campaign Against E-Cigarettes

Newsy (Jan. 29, 2015) The California Health Department says e-cigarettes are a public health risk for both smokers and those who inhale e-cig smoke secondhand. Video provided by Newsy
Powered by NewsLook.com
Measles Scare Sends 66 Calif. Students Home

Measles Scare Sends 66 Calif. Students Home

AP (Jan. 29, 2015) Officials say 66 students at a Southern California high school have been told to stay home through the end of next week because they may have been exposed to measles and are not vaccinated. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins