Featured Research

from universities, journals, and other organizations

Newly Found Enzymes May Play Early Role In Cancer

Date:
December 28, 2008
Source:
University of Utah
Summary:
Researchers have discovered two enzymes that, when combined, could be involved in the earliest stages of cancer. Manipulating these enzymes genetically might lead to targeted therapies aimed at slowing or preventing the onset of tumors.

Researchers have discovered two enzymes that, when combined, could be involved in the earliest stages of cancer. Manipulating these enzymes genetically might lead to targeted therapies aimed at slowing or preventing the onset of tumors.

"We could conceivably reactivate a completely normal gene in a tumor cell – a gene that could prevent the growth of a tumor if reactivated," says David Jones, Ph.D., professor of oncological sciences at the University of Utah and senior director of early translational research at the university's Huntsman Cancer Institute (HCI).

"We believe this could be one of the earliest processes to go wrong in cancer," he adds. "By manipulating these enzymes, we could possibly prevent or slow the onset of tumors."

The enzymes appear to control an "on–and-off switch" for critical genes that could trigger cancer or numerous other diseases and birth defects. The research is published in the December 26 issue of Cell.

Using zebrafish that share similar genetics to humans, the HCI scientists identified a previously unknown enzyme process that controls the levels of DNA methylation on genes.

"Methylation is a cellular process that is required for healthy cell growth and development, but it can go awry in cancer and diseased cells," says Brad Cairns, Ph.D., HCI investigator and professor of oncological sciences at the University of Utah. "You can think of DNA methylation as an on-and-off switch. Methylation silences or 'shuts off' genes that need to be turned off or are not functioning as they should, whereas the reverse process called demethylation 'turns on' healthy genes and genes needed at critical times in development," he says.

In cancer, this methylation process goes haywire, leading to tumor growth. Genes that should be "turned on" are not and vice versa.

The significance of this research is the discovery of two enzymes involved in DNA demethylation. Defects in DNA methylation balance are strongly associated with the early development of cancer, other diseases and birth defects, and the scientists say their study is the first clear evidence that this enzyme system plays a critical role in maintaining this balance. They also believe it's a process that can be reversed.

Further research will reveal if DNA methylation levels can be manipulated genetically. If so, it could lead to drugs to reactivate particular genes and suppress tumor growth. Remarkably, this system also helps protect the genome from mutations.

"We discovered a pair of enzymes that can remove methylated DNA, but if these enzymes work improperly, they will instead enhance the rate of mutations in methylated DNA and cause cancer progression," says Jones. "The question now is, when they work improperly, can we find ways to shut them off and prevent these mutations?"

The enzymes leading to DNA demethylation involve the coupling of a 5-meC deaminase enzyme, a G:T glycosylase enzyme and Gadd45, which is not an enzyme.


Story Source:

The above story is based on materials provided by University of Utah. Note: Materials may be edited for content and length.


Cite This Page:

University of Utah. "Newly Found Enzymes May Play Early Role In Cancer." ScienceDaily. ScienceDaily, 28 December 2008. <www.sciencedaily.com/releases/2008/12/081224215544.htm>.
University of Utah. (2008, December 28). Newly Found Enzymes May Play Early Role In Cancer. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2008/12/081224215544.htm
University of Utah. "Newly Found Enzymes May Play Early Role In Cancer." ScienceDaily. www.sciencedaily.com/releases/2008/12/081224215544.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Despite The Risks, Antibiotics Still Overprescribed For Kids

Despite The Risks, Antibiotics Still Overprescribed For Kids

Newsy (Sep. 15, 2014) A new study finds children are prescribed antibiotics twice as often as is necessary. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins