Featured Research

from universities, journals, and other organizations

Bright Lights, Not-so-big Pupils

Date:
December 31, 2008
Source:
Johns Hopkins Medical Institutions
Summary:
Neuroscientists have worked out how some newly discovered light sensors in the eye detect light and communicate with the brain.

A team of Johns Hopkins neuroscientists has worked out how some newly discovered light sensors in the eye detect light and communicate with the brain. The report appears online this week in Nature.

These light sensors are a small number of nerve cells in the retina that contain melanopsin molecules. Unlike conventional light-sensing cells in the retina—rods and cones—melanopsin-containing cells are not used for seeing images; instead, they monitor light levels to adjust the body's clock and control constriction of the pupils in the eye, among other functions.

"These melanopsin-containing cells are the only other known photoreceptor besides rods and cones in mammals, and the question is, 'How do they work?'" says Michael Do, Ph.D., a postdoctoral fellow in neuroscience at Hopkins. "We want to understand some fundamental information, like their sensitivity to light and their communication to the brain."

Using mice, the team first tested the light sensitivity of these cells by flashing light at the cells and recording the electrical current generated by one cell. They found that these cells are very insensitive to light, in contrast to rods, which are very sensitive and therefore enable us to see in dim light at night, for example. According to Do, the melanopsin-containing cells are less sensitive than cones, which are responsible for our vision in daylight.

"The next question was, What makes them so insensitive to light? Perhaps each photon they capture elicits a tiny electrical signal. Then there would have to be bright light—giving lots of captured photons—for a signal large enough to influence the brain. Another possibility is that these cells capture photons poorly," says Do.

To figure this out, the team flashed dim light at the cells. The light was so dim that, on average, only a single melanopsin molecule in each cell was activated by capturing a photon. They found that each activated melanopsin molecule triggered a large electrical signal. Moreover, to their surprise, the cell transmits this single-photon signal all the way to the brain.

Yet the large signal generated by these cells seemed incongruous with their need for such bright light. "We thought maybe they need so much light because each cell might also contain very few melanopsin molecules, decreasing their ability to capture photons," says King-Wai Yau, Ph.D., a professor of neuroscience at Hopkins. When they did the calculations, the research team found that melanopsin molecules are 5,000 times sparser than other light-capturing molecules used for image-forming vision.

"It appears that these cells capture very little light. However, once captured, the light is very effective in producing a signal large enough to go straight to the brain," says Yau. "The signal is also very slow, so it is not intended for detecting very brief changes in ambient light, but slow changes over time instead."

Curious about how these cells bear on behavior, the researchers examined pupil constriction in mice that had been genetically altered to be free of rod and cone function in order to focus on activity resulting from only melanopsin-containing cells. Flashing light at mice sitting in the dark, the team measured the degree of pupil constriction. They found that, on average, roughly 500 light-activated melanopsin molecules are enough to trigger a pupil response. "But it takes a lot of light to activate 500 molecules of melanopsin," says Yau. "Thus, the pupils close maximally only in bright light."

"In terms of controlling the pupils and the body clock, it makes sense to have a sensor that responds slowly and only to large light changes," says Yau. "You wouldn't want your body to think every cloud passing through the sky is nightfall."

"These melanopsin-containing cells signal light to many different parts of the brain to drive different behaviors, from setting the circadian clock to affecting mood and movement," says Do. "I want to know how these signals are processed and whether they are abnormal in disorders like seasonal affective disorder and jetlag—this is what we hope to tackle next."

This study was funded by a National Research Service Award, the Visual Neuroscience Training Program at Johns Hopkins supported by the National Eye Institute, and grants from the National Institutes of Health.

Authors on the paper are Michael Tri H. Do, Shin H. Kang, Tian Xue, Haining Zhong, Hsi-Wen Liao, Dwight E. Bergles, and King-Wai Yau, all of Johns Hopkins.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Bright Lights, Not-so-big Pupils." ScienceDaily. ScienceDaily, 31 December 2008. <www.sciencedaily.com/releases/2008/12/081231152303.htm>.
Johns Hopkins Medical Institutions. (2008, December 31). Bright Lights, Not-so-big Pupils. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2008/12/081231152303.htm
Johns Hopkins Medical Institutions. "Bright Lights, Not-so-big Pupils." ScienceDaily. www.sciencedaily.com/releases/2008/12/081231152303.htm (accessed April 19, 2014).

Share This



More Health & Medicine News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins