Featured Research

from universities, journals, and other organizations

Disabling Enzyme Allows Mice To Gorge Without Becoming Obese, New Study Finds

Date:
January 13, 2009
Source:
University of California - Berkeley
Summary:
Researchers have discovered that a key enzyme in fat tissue plays a major role in regulating fat metabolism. Mice that have had this enzyme disabled remained lean despite eating a high-fat diet and losing a hormone that suppresses appetite.

Researchers at the University of California, Berkeley, have identified a new enzyme that plays a far more important role than expected in controlling the breakdown of fat. In a new study to be published Jan. 11 in the journal Nature Medicine, researchers report that mice that have had this enzyme disabled remained lean despite eating a high-fat diet and losing a hormone that suppresses appetite.

"We have discovered a new enzyme within fat cells that is a key regulator of fat metabolism and body weight, making it a promising target in the search for a treatment for human obesity," said Hei Sook Sul, UC Berkeley professor of nutritional sciences and toxicology and principal investigator of the research.

Sul's research team includes the three co-lead authors of the paper, all from UC Berkeley's Department of Nutritional Sciences and Toxicology: Kathy Jaworski, former post-doctoral researcher; Maryam Ahmadian, graduate student; and Robin Duncan, post-doctoral fellow.

The enzyme in the spotlight, adipose-specific phospholipase A2 (AdPLA), is found in abundance only in fat tissue. AdPLA sets off a chain of events that increases levels of a signaling molecule called prostaglandin E2 (PGE2), which suppresses the breakdown of fat. Mice that have no AdPLA have lower PGE2 levels and a higher rate of fat metabolism.

"When levels of PGE2 are decreased because of the lack of AdPLA, fat breakdown proceeds unchecked, resulting in leanness even in animals that eat all day long," said co-lead author Duncan.

In the study, mice that had the gene for AdPLA expression knocked out were compared with a control group of normal mice. As soon as the mice were weaned at about 3 weeks of age, researchers began offering the two groups of mice an all-you-can-eat buffet of tasty, high-fat foods.

Notably, the enzyme did not appear to affect appetite since the two groups ate equivalent amounts. However, as the mice aged, the disparity in weight gain became clear. By 64 weeks of age - considered the twilight years in a lab mouse's lifespan - the mice that lacked the AdPLA enzyme averaged only 39.1 grams, a weight more typical of a low-fat diet, while the control mice weighed in at a hefty 73.7 grams.

The researchers noted that the missing AdPLA did not change the number of fat cells, but simply kept the cells from accumulating excess fat.

The researchers also studied whether loss of AdPLA could prevent genetic obesity in mice. They compared mice that lacked leptin, the hormone that signals when the body is full, with mice that lacked both AdPLA and leptin. Leptin-deficient mice are voracious eaters, typically consuming two to three times more food per day than normal mice, and they rapidly develop obesity.

In this study, leptin-deficient mice ate an average of 5 grams of food per day, while mice that lacked both AdPLA and leptin ate 7.5 grams. Typically, normal mice will eat only 2-3 grams per day. By 17 weeks of age, the leptin-deficient mice were already hitting the scales at 75 grams. In comparison, mice that lacked both AdPLA and leptin weighed just under 35 grams.

The researchers found that levels of AdPLA increase after eating to block fat breakdown, and decrease with fasting to allow fat breakdown to proceed efficiently. They also found that levels of AdPLA are higher in obese mice.

"This means that local signals in fat tissue allow fat cells to directly regulate fuel provision for the body, which changes our fundamental understanding of how the body regulates fat breakdown," said Ahmadian, another study co-lead author. "We found that mice deficient in AdPLA expend more energy than normal mice, and they also burn more fat directly within fat cells."

Before this paper, the assumption had been that the major players in controlling fat metabolism and body weight were endocrine factors, primarily hormones that are secreted by different organs and glands and travel through the bloodstream to fat tissue, the authors said.

The new findings show that a large portion of the action is occurring within the actual fat tissue, mainly through the autocrine and paracrine action of PGE2 that acts locally within a cell or small group of cells.

The researchers caution that previous discoveries in fat metabolism and appetite regulation have not always translated well from mice to humans. Although some people have mutations in the gene that codes for AdPLA, it remains to be seen what effect these mutations have in humans, they said.

They also noted that inhibiting the expression of AdPLA in mice led to greater insulin resistance and a four-fold increase in fat content in the liver. However, tests of liver function were largely normal.

Nevertheless, AdPLA may become an attractive target in developing a treatment to combat obesity, the researchers said. If excess fat can be burned before it escapes the fat cell, it can never get into the bloodstream to negatively affect other organs, such as the heart.

"We believe that the effects in the liver are due to the extremely high rate of fat breakdown and drastic leanness in these mice, so we are looking to see if reducing rather than completely eliminating AdPLA can provide effective protection against obesity without secondary effects," said Duncan.

The U.S. National Institutes of Health, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Institutes of Health Research helped support this study.


Story Source:

The above story is based on materials provided by University of California - Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Berkeley. "Disabling Enzyme Allows Mice To Gorge Without Becoming Obese, New Study Finds." ScienceDaily. ScienceDaily, 13 January 2009. <www.sciencedaily.com/releases/2009/01/090111163036.htm>.
University of California - Berkeley. (2009, January 13). Disabling Enzyme Allows Mice To Gorge Without Becoming Obese, New Study Finds. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2009/01/090111163036.htm
University of California - Berkeley. "Disabling Enzyme Allows Mice To Gorge Without Becoming Obese, New Study Finds." ScienceDaily. www.sciencedaily.com/releases/2009/01/090111163036.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins