Featured Research

from universities, journals, and other organizations

Comparative Genomics Reveals Molecular Evolution Of Q Fever Pathogen

Date:
February 11, 2009
Source:
Virginia Tech
Summary:
Scientists have uncovered genetic clues about why some strains of the pathogen Coxiella burnetii are more virulent than others.

Scientists from the National Institute of Allergy and Infectious Diseases, Texas A&M Health Center, and the Virginia Bioinformatics Institute at Virginia Tech have uncovered genetic clues about why some strains of the pathogen Coxiella burnetii are more virulent than others.

Related Articles


The researchers compared the sequences of four different strains of C. burnetii, an intracellular bacterium that can cause acute and chronic Q fever in humans, to build up a comprehensive picture of the genetic architecture and content of the different genomes. The scientists examined C. burnetii strains of differing virulence to unveil clues on the genetic features associated with pathogenicity.

Q fever is considered one of the most infectious diseases in the world since inhalation of a single bacterium alone is sufficient to kick-start infection. Infection in humans typically results from contact with infected animals such as cattle, goats, and sheep. The C. burnetii bacterium targets macrophages — white blood cells in the body that usually provide protection against invading pathogens. The pathogen has the remarkable ability to replicate in a lysosome-like vacuole of macrophages, an extremely harsh intracellular environment that usually protects the body from infection by breaking down invading pathogens. The chronic form of Q fever in humans is rare but can lead to heart infections that are usually deadly if untreated.

Dr. Robert Heinzen, head of the Coxiella Pathogenesis Section at the National Institute of Allergy and Infectious Disease, remarked: "Our results suggest that mobile genetic elements have played a major role in the evolution and function of the C. burnetii genome. Recombination between insertion sequence elements or jumping genes appears to have brought about large-scale generation of non-functional genes, a change that may be associated with a more pathogenic lifestyle."

In the study, the researchers sequenced the genomes of three strains of the bacteria and made a four-way comparison of C. burnetii genomic sequences. Strain virulence was associated with a smaller genome. The loss of genes was due in part to the formation of pseudogenes, evolutionary remnants of earlier genes that no longer code for functional proteins.

Kelly Williams, research investigator at VBI, commented: "A principle of our and many modern studies was first enunciated in the title of a 1965 paper by Emile Zuckerkandl and Linus Pauling, 'Molecules as documents of evolutionary history'. Genomes are the ultimate molecular documents, filled with stories that fascinate and instruct, and we can now speed-read them."

VBI Executive and Scientific Director Bruno Sobral, a co-author on the paper, remarked: "2009 is the 200th anniversary of the birth of Darwin. That's a very suitable time to step back and think about how new technologies are giving us ever more powerful ways to investigate the history and mechanism of evolution. We hope the work in the current study serves as a resource for both the Coxiella and wider infectious disease research communities interested in the evolution of pathogen virulence."

Dr. Heinzen concluded: "The results of this study provide a solid foundation upon which we can test a number of hypotheses related to C. burnetii gene function and virulence. This information will prove invaluable as we proceed to dissect, at a molecular level, events associated with Q fever pathogenesis"


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal Reference:

  1. Beare et al. Comparative Genomics Reveal Extensive Transposon-Mediated Genomic Plasticity and Diversity among Potential Effector Proteins within the Genus Coxiella. Infection and Immunity, 2008; 77 (2): 642 DOI: 10.1128/IAI.01141-08

Cite This Page:

Virginia Tech. "Comparative Genomics Reveals Molecular Evolution Of Q Fever Pathogen." ScienceDaily. ScienceDaily, 11 February 2009. <www.sciencedaily.com/releases/2009/02/090202175157.htm>.
Virginia Tech. (2009, February 11). Comparative Genomics Reveals Molecular Evolution Of Q Fever Pathogen. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/02/090202175157.htm
Virginia Tech. "Comparative Genomics Reveals Molecular Evolution Of Q Fever Pathogen." ScienceDaily. www.sciencedaily.com/releases/2009/02/090202175157.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins