Featured Research

from universities, journals, and other organizations

Holographic Universe: Discovery Could Herald New Era In Fundamental Physics

Date:
February 4, 2009
Source:
Cardiff University
Summary:
Scientists searching the depths of space to study gravitational wave may have stumbled on one of the most important discoveries in physics. At least one physicist is convinced that he has found proof in the data of the gravitational wave detector GEO600 of a holographic universe.

View through one of the tubes of GEO600.
Credit: Max Planck Institute for Gravitational Physics/Leibniz Universität Hannover

Cardiff University researchers, who are part of a British-German team searching the depths of space to study gravitational waves, may have stumbled on one of the most important discoveries in physics, according to an American physicist.

Craig Hogan, a physicist at Fermilab Centre for Particle Astrophysics in Illinois is convinced that he has found proof in the data of the gravitational wave detector GEO600 of a holographic Universe – and that his ideas could explain mysterious noise in the detector data that has not been explained so far.

The British-German team behind the GEO600, which includes scientists from the School of Physics and Astronomy's Gravitational Physics Group, will now carry out new experiments in the coming months to yield more evidence about Craig Hogan's assumptions. If proved correct, it could help in the quest to bring together quantum mechanics and Einstein's theory of gravity.

In order to test the theory of holographic noise, the frequency of GEO600´s maximum sensitivity will be shifted towards ever higher frequencies. The frequency of maximum sensitivity is the tone that the detector can hear best. It is normally adjusted to offer the best chance for hearing exploding stars or merging black holes.

Even if it turns out that the mysterious noise is the same at high frequencies as at the lower ones, this will not constitute proof for Hogan's hypothesis. It would, however, provide a strong motivation for further study. The sensitivity of GEO600 will then be significantly improved by using 'squeezed vacuum' and by the installation of a mode filter in a new vacuum chamber. The technology of 'squeezed vacuum' was particularly refined in Hannover and would be used in a gravitational wave detector for the first time.

Professor Jim Hough of Glasgow University, one of the pioneer developers of gravitational wave detectors, says: 'Craig Hogan made a very interesting prediction. It may be the first of a number of unexpected possibilities to be investigated as gravitational wave detectors become more sensitive.'

Professor Bernard Schutz, Professor at the School of Physics and Astronomy, member of the Gravitational Physics Group at the School, and recently elected as an Honorary Fellow of the Royal Astronomical Society said: "It would be truly remarkable if GEO600 is sensitive to the quantum nature of space and time. The only way to confirm that would be to carry out controlled experiments, the results of which can be solely attributed to holographic noise. Such an experiment would herald a new era in fundamental physics".

Professor Dr. Karsten Danzmann, director of the Hannover Albert-Einstein-Institute, said: "We are very eager to find out what we can learn about the possible holographic noise over the course of the coming year. GEO600 is the only experiment in the world able to test this controversial theory at this time. Unlike the other large laser interferometers, GEO600 reacts particularly sensitively to lateral movement of the beam splitter because it is constructed using the principle of signal recycling. Normally this is inconvenient, but we need the signal recycling to compensate for the shorter arm lengths compared to other detectors. The holographic noise, however, produces exactly such a lateral signal and so the disadvantage becomes an advantage in this case. You could say that this has placed us in the very centre of a tornado in fundamental research!

Searching for the graininess of space

The smallest possible fraction of distance is called the 'Planck length" by physicists. Its value is 1.6 x 10-35 m – this is impossible to measure by itself. The established physical theories cease to function at this scale. GEO600 scientists are testing a theory by US physicist Craig Hogan, who is convinced he can hear the noise of space quanta in the data of the gravitational wave detector GEO600. Hogan suggests that the mirrors in an interferometer wander relative to one another in very rapid steps of the tiny Planck amount, that accumulate during the time of a measurement into something as large as a gravitational wave would produce. Hogan and the GEO600 scientists are following up the question whether a certain 'noise signal' in the data recorded by the detector can be traced back to the graininess of space and time.

GEO600

Because of its innovative and reliable technology, GEO 600 has gained an excellent worldwide reputation and is considered a think-tank for international gravitational wave observation. It was here that the most modern lasers in the world were developed which are being used in all the gravitational wave observatories in the world today. Researchers at GEO600 are taking technology a step further with 'squeezed vacuum'. This technology is designated for use in the third generation of gravitational wave detectors.

GEO600 is a joint project of scientists of the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, or AEI), Leibniz Universität Hannover, Cardiff University, the University of Glasgow and the University of Birmingham. It is funded jointly by the Max Planck Society in Germany and the Science and Technology Facilities Council in UK.

Further information:


Story Source:

The above story is based on materials provided by Cardiff University. Note: Materials may be edited for content and length.


Cite This Page:

Cardiff University. "Holographic Universe: Discovery Could Herald New Era In Fundamental Physics." ScienceDaily. ScienceDaily, 4 February 2009. <www.sciencedaily.com/releases/2009/02/090203130708.htm>.
Cardiff University. (2009, February 4). Holographic Universe: Discovery Could Herald New Era In Fundamental Physics. ScienceDaily. Retrieved July 27, 2014 from www.sciencedaily.com/releases/2009/02/090203130708.htm
Cardiff University. "Holographic Universe: Discovery Could Herald New Era In Fundamental Physics." ScienceDaily. www.sciencedaily.com/releases/2009/02/090203130708.htm (accessed July 27, 2014).

Share This




More Matter & Energy News

Sunday, July 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins