Featured Research

from universities, journals, and other organizations

Scientists Control The Spin Of Semiconductor Quantum Dot Shell States

Date:
February 10, 2009
Source:
Naval Research Laboratory
Summary:
Scientists have recently demonstrated the ability to control the spin population of the individual quantum shell states of self-assembled indium arsenide quantum dots (QDs). These results are significant in the understanding of QD behavior and scientists' ability to utilize QDs in active devices or for information processing.

Atomic force microscope image of the uncovered QDs.
Credit: Naval Research Laboratory

Scientists at the Naval Research Laboratory (NRL) have recently demonstrated the ability to control the spin population of the individual quantum shell states of self-assembled indium arsenide (InAs) quantum dots (QDs). These results are significant in the understanding of QD behavior and scientists' ability to utilize QDs in active devices or for information processing.

The scientists, from NRL's Materials Science and Technology Division, used a spin-polarized bias current from an iron (Fe) thin film contact and determined the strength of the interaction between spin-polarized electrons in the s, p and d shells.

Semiconductor QDs are nanoscale circular disks of one semiconducting material, typically 3 nm high by 30 nm in diameter, embedded within layers of a second material. Figure 1 shows such a structure, with an atomic force microscope image of the uncovered QDs in figure 2. Semiconductor QDs are attractive for a variety of quantum information processing, electronic and spintronic applications. In spintronic applications, the electron's spin rather than charge is used to store and process information. The International Technology Roadmap for Semiconductors has identified the electron's spin as a new state variable which should be explored as an alternative to the electron's charge for use beyond standard CMOS technology. The QD electronic structure exhibits the s,p,d,f shells characteristic of single atoms, so they are often referred to as "artificial atoms."

The NRL researchers monitor the shell population and spin polarization by measuring the polarized light emitted as a function of the bias current from the Fe contact. In contrast with previous work, they resolve features in the electroluminescence (EL) spectra associated with the individual quantum levels (s-, p-, d-, and f- shells). As the bias current is increased, the shell states fill, and the EL from the QDs exhibits peaks characteristic of the shell energies, as labeled in figure 3.

Intershell exchange strongly modifies the optical polarization observed from that expected for simple models of shell occupation. From a detailed analysis of the EL spectra, the NRL researchers were able to obtain the first experimental measure of the exchange energies between electrons in the s- and p-shells, and between electrons in the p- and d-shells. These energies describe the degree of interaction between these quantum levels.

A complete description of this work can be found in Physical Review Letters (28 November 2008).


Story Source:

The above story is based on materials provided by Naval Research Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Naval Research Laboratory. "Scientists Control The Spin Of Semiconductor Quantum Dot Shell States." ScienceDaily. ScienceDaily, 10 February 2009. <www.sciencedaily.com/releases/2009/02/090205120403.htm>.
Naval Research Laboratory. (2009, February 10). Scientists Control The Spin Of Semiconductor Quantum Dot Shell States. ScienceDaily. Retrieved September 24, 2014 from www.sciencedaily.com/releases/2009/02/090205120403.htm
Naval Research Laboratory. "Scientists Control The Spin Of Semiconductor Quantum Dot Shell States." ScienceDaily. www.sciencedaily.com/releases/2009/02/090205120403.htm (accessed September 24, 2014).

Share This



More Matter & Energy News

Wednesday, September 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
The Hyped-Up Big Bang Discovery Has A Dust Problem

The Hyped-Up Big Bang Discovery Has A Dust Problem

Newsy (Sep. 22, 2014) An analysis of new satellite data casts serious doubt on a previous study about the Big Bang that was once hailed as revolutionary. Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins