Featured Research

from universities, journals, and other organizations

Diamond-like Films Help In Study Of Solar Winds

Date:
February 19, 2009
Source:
Sandia National Laboratories
Summary:
Diamond-like carbon films are helping probe the far boundaries of the solar system as part of a NASA mission to study how the sun's solar wind interacts with the interstellar medium -- the matter that exists between the stars within a galaxy.

Tom Friedmann checks out a sample diamond-like carbon film he created for the low-energy sensor (IBEX-Lo) on board NASA's Interstellar Boundary Explorer (IBEX).
Credit: Photo by Randy Montoya

Diamond-like carbon films created at Sandia National Laboratories are helping probe the far boundaries of the solar system as part of a NASA mission to study how the sun’s solar wind interacts with the interstellar medium – the matter that exists between the stars within a galaxy.

The films are in the low-energy sensor (IBEX-Lo) on board NASA’s Interstellar Boundary Explorer (IBEX), which lifted off in October on a mission to study the farthest fringes of the solar system. IBEX’s two bucket-sized sensors, covering high and low energy ranges, are designed to capture particles bouncing back toward Earth from the distant boundary between the hot wind from the sun and the cold wall of interstellar space.

The active conversion surface of the low-energy neutral atom detector is coated with Sandia’s diamond-like films created by Tom Friedmann.

“The primary purpose of the diamond-like carbon films is to provide a surface that will ‘efficiently’ ionize energetic neutral atoms,” Friedmann says, “so they can then be detected. Smooth surfaces are required so that the scattered particles can be efficiently collected. If the surface is rough, scattered particles are lost, decreasing efficiency. The diamond-like carbon films have an average surface roughness that is about one angstrom. This is less than the diameter of a carbon atom.”

To create the 30 films aboard the system, Friedmann used pulsed-laser deposition to deposit the films on the conversion surfaces. Carbon was used because it has relatively high conversion efficiency, low sputter yield, and is very smooth, he says. Single crystal diamond has the highest efficiency but is too expensive to grow over large areas and difficult to polish to the extremely low surface roughness needed. The diamond-like carbon films naturally grow smooth and require no polishing.

Friedmann says the project took about one and a half months to complete and he says he was pleased with the outcome. Now the IBEX team is awaiting the results from the mission.

Eric Hertzberg, from Lockheed Martin Advanced Technology Center, approached Friedmann to create the films. Hertzberg is the lead engineer for the IBEX-Lo Sensor. Bob Nemanich, Arizona State University, also played a key role in passivating the films. Friedmann says Sandia uses similar films in studies of electron field emission and in microelectromechanical Systems (MEMS) devices.

Voyager 1, launched in 1977, made the first direct measurements of this boundary (the heliopause) as it was the first spacecraft to leave the inner solar system and head toward interstellar space. Voyager 2, launched the same year, will also relay observations of the boundary, but these measurements are of only one place and time.

IBEX is designed to provide a three-dimensional map of the boundary. IBEX is the latest in NASA’s series of low-cost, rapidly developed Small Explorers spacecraft. The IBEX mission was developed by Southwest Research Institute, led by Principal Investigator David McComas, with a national and international team of partners.


Story Source:

The above story is based on materials provided by Sandia National Laboratories. Note: Materials may be edited for content and length.


Cite This Page:

Sandia National Laboratories. "Diamond-like Films Help In Study Of Solar Winds." ScienceDaily. ScienceDaily, 19 February 2009. <www.sciencedaily.com/releases/2009/02/090218095842.htm>.
Sandia National Laboratories. (2009, February 19). Diamond-like Films Help In Study Of Solar Winds. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2009/02/090218095842.htm
Sandia National Laboratories. "Diamond-like Films Help In Study Of Solar Winds." ScienceDaily. www.sciencedaily.com/releases/2009/02/090218095842.htm (accessed August 30, 2014).

Share This




More Space & Time News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins