Featured Research

from universities, journals, and other organizations

Billions Of Years Ago, Microbes Were Key In Developing Modern Nitrogen Cycle

Date:
March 3, 2009
Source:
University of Washington
Summary:
New research shows that the large-scale evolution of microbes was mostly complete 2.5 billion years ago, and that included the beginning of the modern aerobic nitrogen cycle.

As the world marks the 200th anniversary of Charles Darwin's birth, there is much focus on evolution in animals and plants. But new research shows that for the countless billions of tiniest creatures – microbes – large-scale evolution was completed 2.5 billion years ago.

"For microbes, it appears that almost all of their major evolution took place before we have any record of them, way back in the dark mists of prehistory," said Roger Buick, a University of Washington paleontologist and astrobiologist.

All living organisms need nitrogen, a basic component of amino acids and proteins. But for atmospheric nitrogen to be usable, it must be "fixed," or converted to a biologically useful form. Some microbes turn atmospheric nitrogen into ammonia, a form in which the nitrogen can be easily absorbed by other organisms.

But the new research shows that about 2.5 billion years ago some microbes evolved that could carry the process a step further, adding oxygen to the ammonia to produce nitrate, which also can be used by organisms. That was the beginning of what today is known as the aerobic nitrogen cycle.

The microbes that accomplished that feat are on the last, or terminal, branches of the bacteria and archaea domains of the so-called tree of life, and they are the only microbes capable of carrying out the step of adding oxygen to ammonia.

The fact that they are on those terminal branches indicates that large-scale evolution of bacteria and archaea was complete about 2.5 billion years ago, Buick said.

"Countless bacteria and archaea species have evolved since then, but the major branches have held," said Buick, a UW professor of Earth and space sciences.

He is the corresponding author of the research, which appears in the Feb. 20 edition of Science. Lead author is Jessica Garvin, a UW Earth and space sciences graduate student. Other authors are Ariel Anbar and Gail Arnold of Arizona State University and Alan Jay Kaufman of the University of Maryland. The work was funded by NASA and the National Science Foundation.

The scientists examined material from a half-mile-deep core drilled in the Pilbara region of northwest Australia. They looked specifically at a section of shale from 300 to 650 feet deep, deposited 2.5 billion years ago, and found telltale isotope signatures created in the process of denitrification, the removal of oxygen from nitrate.

If denitrification was occurring, then nitrification – the addition of oxygen to ammonia to form nitrate – also must have been taking place, Buick said. That makes the find the earliest solid evidence for the beginning of the aerobic nitrogen cycle.

"What this shale deposit has done is record the onset of the modern nitrogen cycle," he said. "This was a life-giving nutrient then and remains so today. That's why you put nitrogen fertilizer on your tomato plants, for example."

The discovery gives clues about when and how the Earth's atmosphere became oxygen rich, Buick believes.

Geochemical examination of stratigraphic samples from the core indicates that atmospheric oxygen rose in a temporary "whiff" about 2.5 billion years ago. The whiff lasted long enough to be recorded in the nitrogen isotope record, then oxygen dropped back to very low levels before the atmosphere became permanently oxygenated about 2.3 billion years ago.

It is unclear why the oxygen level declined following the temporary increase. It could have been that the oxygen was depleted rapidly as it reacted with chemicals and minerals that had not been exposed to oxygen previously, Buick said. Or something could have halted the photosynthesis that produced the oxygen in the first place.

But it seems clear, he said, that the tiniest creatures played a crucial role in completing the nitrogen cycle that life depends on today.

"All microbes are amazing chemists compared to us. We're really very boring, metabolically," Buick said.

"To understand early evolution of life, we have to know how organisms were nourished and how they evolved. This work helps us on both of those counts," he said.


Story Source:

The above story is based on materials provided by University of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University of Washington. "Billions Of Years Ago, Microbes Were Key In Developing Modern Nitrogen Cycle." ScienceDaily. ScienceDaily, 3 March 2009. <www.sciencedaily.com/releases/2009/02/090219141436.htm>.
University of Washington. (2009, March 3). Billions Of Years Ago, Microbes Were Key In Developing Modern Nitrogen Cycle. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2009/02/090219141436.htm
University of Washington. "Billions Of Years Ago, Microbes Were Key In Developing Modern Nitrogen Cycle." ScienceDaily. www.sciencedaily.com/releases/2009/02/090219141436.htm (accessed October 22, 2014).

Share This



More Fossils & Ruins News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sunken WWII U-Boat That Fired On U.S. Convoy Found

Sunken WWII U-Boat That Fired On U.S. Convoy Found

Newsy (Oct. 22, 2014) U-576, a long-lost German U-boat the U.S. sank in 1942, has been found just 30 miles off North Carolina's coast and near the wreckage of another ship. Video provided by Newsy
Powered by NewsLook.com
Turns Out Jack The Ripper's True Identity Is Still Unknown

Turns Out Jack The Ripper's True Identity Is Still Unknown

Newsy (Oct. 20, 2014) After testing DNA from a shawl found near one of Jack the Ripper's victims, a scientist said he'd identified the killer. New reports refute the claim. Video provided by Newsy
Powered by NewsLook.com
Fish Fossil Shows First-Ever Sex Was Done Side By Side

Fish Fossil Shows First-Ever Sex Was Done Side By Side

Newsy (Oct. 19, 2014) A 380-million-year-old fish may be the first creature to have copulative sex - and it was side by side with arms linked, like square dancers. Video provided by Newsy
Powered by NewsLook.com
As Sweden Hunts For Sub, "Cold War" Comparisons Flourish

As Sweden Hunts For Sub, "Cold War" Comparisons Flourish

Newsy (Oct. 19, 2014) With Sweden on the look-out for a suspected Russian sub, a lot of people are talking about the Cold War, but is it an apt comparison? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins