Featured Research

from universities, journals, and other organizations

Slowing Aging: Anti-aging Pathway Enhances Cell Stress Response

Date:
February 28, 2009
Source:
Northwestern University
Summary:
Scientists have discovered a new molecular relationship critical to keeping cells healthy across a long span of time: a protein called SIRT1, important for caloric restriction and lifespan and activated by resveratrol, regulates heat shock factor 1 (HSF1), keeping it active. HSF1 in turn senses the presence of damaged proteins in the cell and elevates the expression of molecular chaperons to keep a cell's proteins in a folded, functional state. "We have identified a pathway that can be manipulated to alter lifespan," said one of the researchers.

People everywhere are feeling the stress of a worldwide recession. Our cells, too, are under continual assault from stress.

Related Articles


Hidden from sight, our cells battle challenges such as their environment, bacteria, viruses, too much or too little oxygen, and physiological stressors. Molecular systems protect cells under assault, but those systems can break down, especially with age.

To better understand how cells are protected from stress and damage, a team led by Northwestern University researchers studied the effect of resveratrol, a beneficial chemical found in red wine, on human cells in tissue culture.

The findings may help explain what happens in neurodegenerative diseases, which are age-related, when cell protection fails, proteins misfold, lots of damage accumulates and the system falls apart.

The researchers discovered a new molecular relationship critical to keeping cells healthy across a long span of time: a protein called SIRT1, important for caloric restriction and lifespan and activated by resveratrol, regulates heat shock factor 1 (HSF1), keeping it active. HSF1 in turn senses the presence of damaged proteins in the cell and elevates the expression of molecular chaperones to keep a cell's proteins in a folded, functional state. Regulation of this pathway has a direct beneficial effect to cells, the research shows.

This role of SIRT1 -- a protein already of great interest to pharmaceutical companies -- was not previously known.

"When SIRT1 levels are high, you are in a high-protection mode," said Richard I. Morimoto, Bill and Gayle Cook Professor of Biochemistry, Molecular Biology and Cell Biology in Northwestern's Weinberg College of Arts and Sciences. He led the research team.

"Ironically, triggering the stress response and perhaps maintaining the cell in a protective state over a long period of time can keep cells healthy," said Morimoto. "The cell is protected against an accumulation of damage when HSF1 is more active."

SIRT1 levels decrease as humans age, Morimoto explains. Cells can't respond to stress as well. This decrease in SIRT1 may help explain why protein misfolding diseases, such as Alzheimer's, Parkinson's, Huntington's and adult-onset diabetes, are diseases of aging.

"We now have a powerful way to think about addressing neurodegenerative diseases," said Morimoto. "We have identified a pathway that can be manipulated to alter lifespan. Discovering this new basis for therapeutics is very exciting."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Morimoto et al. Stress-Inducible Regulation of Heat Shock Factor 1 by the Deacetylase SIRT1. Science, Feb 20, 2009

Cite This Page:

Northwestern University. "Slowing Aging: Anti-aging Pathway Enhances Cell Stress Response." ScienceDaily. ScienceDaily, 28 February 2009. <www.sciencedaily.com/releases/2009/02/090219141513.htm>.
Northwestern University. (2009, February 28). Slowing Aging: Anti-aging Pathway Enhances Cell Stress Response. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2009/02/090219141513.htm
Northwestern University. "Slowing Aging: Anti-aging Pathway Enhances Cell Stress Response." ScienceDaily. www.sciencedaily.com/releases/2009/02/090219141513.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins