Featured Research

from universities, journals, and other organizations

European Satellites Provide New Insight Into Ozone-depleting Species

Date:
March 10, 2009
Source:
European Space Agency
Summary:
Using data from the satellite-based MIPAS and GOME-2 instruments, scientists have for the first time detected important bromine species in the atmosphere. These new measurements will help scientists to better understand sources of ozone-depleting species and to improve simulations of stratospheric ozone chemistry.

Smoke and ash plume from the Kasatochi Volcano, visible in brown over a thick layer of clouds. The MERIS instrument on Envisat captured this image on 8 August 2008 over Alaska's Aleutian Islands.
Credit: ESA

Using data from the satellite-based MIPAS and GOME-2 instruments, scientists have for the first time detected important bromine species in the atmosphere. These new measurements will help scientists to better understand sources of ozone-depleting species and to improve simulations of stratospheric ozone chemistry.

Despite the detection of bromine monoxide (BrO) in the atmosphere some 20 years ago, bromine nitrate (BrONO2) was first observed in 2008 when scientists from the Karlsruhe Institute of Technology discovered the gas’s weak signal with data from MIPAS (the Michelson Interferometer for Passive Atmospheric Sounding).

"By comparing the novel MIPAS BrONO2 dataset with model calculations and BrO measurements by SCIAMACHY on Envisat, our general understanding of stratospheric bromine chemistry has been clearly confirmed," said Michael Hφpfner of Germany’s Karlsruhe Institute of Technology. "These new observations also enable an independent estimation of the total amount of bromine in the stratosphere, which is important for understanding the origins of stratospheric bromine."  

The stratospheric ozone layer that protects life on Earth from harmful ultraviolet rays is vulnerable to the presence of certain chemicals in the atmosphere such as chlorine and bromine. In spite of its much smaller concentrations, bromine is actually, after chlorine, the second most important halogen species destroying ozone in the stratosphere.

Since chlorine levels in the stratosphere have been dropping since the ban on man-made chlorofluorocarbons (CFCs), bromine will become even more important in stratospheric ozone chemistry. Bromine’s importance will increase in part because there are more natural sources, such as volcanoes, for bromine emissions than for chlorine.

Volcanoes have long been known to play an important role in influencing stratospheric ozone chemistry because of the gases and particles they shoot into the atmosphere. New findings from space suggest they are also a very important source of atmospheric bromine.

The reactive chemical bromine monoxide (BrO) has been measured in a number of volcanic plumes around the globe, but until recently it had never been measured by a space instrument.

In August 2008, the Kasatochi Volcano in Alaska's Aleutian Islands erupted explosively, sending a cloud of volcanic ash and gas more than 11 km into the atmosphere.

The following day, scientists from the Brussels-based Belgian Institute for Space Aeronomy identified high bromine concentrations in the vicinity of the volcano with Envisat’s SCIAMACHY instrument and the Global Ozone Monitoring Experiment-2 (GOME-2) instrument aboard MetOp-A. (MetOp-A, developed by ESA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), is Europe's first polar-orbiting satellite dedicated to operational meteorology.)

"Because of the good regional coverage of the GOME-2 instrument, the transport of the Kasatochi BrO plume could be followed for six days after the eruption," Michel Van Roozendael from the Belgian Institute for Space Aeronomy said. "Using the Lagrangian dispersion model, results show that the volcanic BrO was directly injected into the upper troposphere/lower stratosphere at altitudes ranging from 8 to 12 km.

"The total mass of reactive bromine released in the atmosphere was estimated around 50 to 120 tons, which corresponds to approximately 25% of the previously estimated total annual mass of reactive bromine emitted by volcanic activity."


Story Source:

The above story is based on materials provided by European Space Agency. Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency. "European Satellites Provide New Insight Into Ozone-depleting Species." ScienceDaily. ScienceDaily, 10 March 2009. <www.sciencedaily.com/releases/2009/02/090225132343.htm>.
European Space Agency. (2009, March 10). European Satellites Provide New Insight Into Ozone-depleting Species. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2009/02/090225132343.htm
European Space Agency. "European Satellites Provide New Insight Into Ozone-depleting Species." ScienceDaily. www.sciencedaily.com/releases/2009/02/090225132343.htm (accessed August 22, 2014).

Share This




More Earth & Climate News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microbrewery Chooses Special Can for Its Beer

Microbrewery Chooses Special Can for Its Beer

AP (Aug. 22, 2014) — Aluminum giant, Novelis, has partnered with Red Hare Brewing Company to introduce the first certified high-content recycled beverage can. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) — New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
California Drought Stings Honeybees, Beekeepers

California Drought Stings Honeybees, Beekeepers

AP (Aug. 21, 2014) — California's record drought is hurting honey supplies and raising prices for consumers. The lack of rainfall means fewer crops and wildflowers that provide the nectar bees need to make honey. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Thousands Of Species Found In Lake Under Antarctic Ice

Thousands Of Species Found In Lake Under Antarctic Ice

Newsy (Aug. 20, 2014) — A U.S. team found nearly 4,000 species in a subglacial lake that hasn't seen sunlight in millennia, showing life can thrive even under the ice. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins