Featured Research

from universities, journals, and other organizations

Major Step Toward Less Energy Loss In New Electromagnetic Materials

Date:
March 13, 2009
Source:
Uppsala University
Summary:
Researchers have managed for the first time to measure magnetic properties in new materials quantitatively with the help of electron microscopy -- with unparalleled precision. The secret behind the breakthrough is a successful elaboration of electron microscope technology. The findings means that the energy loss entailed in all electromagnetic materials can ultimately be minimized.

From physics to material analysis and reduced energy losses in society.
Credit: Image courtesy of Uppsala University

Researchers at Uppsala University have managed for the first time to measure magnetic properties in new materials quantitatively with the help of electron microscopy – with unparalleled precision. The secret behind the breakthrough is a successful elaboration of electron microscope technology. 

Related Articles


The findings, published in the scientific journal Physical Review Letters, means that the energy loss entailed in all electromagnetic materials can ultimately be minimized.

Apace with the miniaturization of electronic components, new methods are needed to analyze the properties of materials down to the atomic level. In 2006 a scientific article showed that it is possible to use a transmission electron microscope to study the magnetic properties of a material, using a technique called “Electron Magnetic Circular Dichroism,” (EMCD). As different materials are combined, often in thin atomic monolayer films, exciting new magnetic properties are created. 

This is an interesting research field that is used in hard drives, for example.  Today scientists are primarily studying magnetic properties with the aid of an extremely expensive synchrotron light source, whereas EMCD affords a cheaper and considerably more detailed study of the magnetic properties of each layer down to one nanometer.

Until now it has only been shown that EMCD works qualitatively. The Uppsala University researchers have further elaborated the technology to enable it to measure the magnetic forces of the sample quantitatively as well.

“This means we can put a number on the magnetic strength of the sample, which is key to understanding how various materials interact,” says Klaus Leifer, professor of experimental physics at the Department of Engineering Sciences.

By combining practical experiments and theoretical calculations, the method of measuring the EMCD signal has now been optimized and the computer processing of the experimental data further developed. The article is the result of collaborative work involving researchers in materials theory (Professor Olle Eriksson), physical materials synthesis (Professor Björgvin Hjörvarsson), and experimental physics.

These findings are important for our ability to analyze the magnetic properties of a material using equipment that is standard in most electron microscopy laboratories today.

“The technology will also enhance our knowledge of the energy losses that occur in magnetic components in generators and transformers,” says Klaus Leifer.


Story Source:

The above story is based on materials provided by Uppsala University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hans Lidbaum, Ján Rusz, Andreas Liebig, Björgvin Hjörvarsson, Peter M. Oppeneer, Ernesto Coronel, Olle Eriksson, and Klaus Leifer. Quantitative Magnetic Information from Reciprocal Space Maps in Transmission Electron Microscopy. Physical Review Letters, 2009; 102 (3): 037201 DOI: 10.1103/PhysRevLett.102.037201

Cite This Page:

Uppsala University. "Major Step Toward Less Energy Loss In New Electromagnetic Materials." ScienceDaily. ScienceDaily, 13 March 2009. <www.sciencedaily.com/releases/2009/03/090303084047.htm>.
Uppsala University. (2009, March 13). Major Step Toward Less Energy Loss In New Electromagnetic Materials. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/03/090303084047.htm
Uppsala University. "Major Step Toward Less Energy Loss In New Electromagnetic Materials." ScienceDaily. www.sciencedaily.com/releases/2009/03/090303084047.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins