Featured Research

from universities, journals, and other organizations

Environmentally-friendly Energy: Sunlight Turns Carbon Dioxide To Methane

Date:
March 8, 2009
Source:
Penn State
Summary:
Dual catalysts may be the key to efficiently turning carbon dioxide and water vapor into methane and other hydrocarbons using titania nanotubes and solar power, according to researchers. Burning fossil fuels like oil, gas and coal release large amounts of carbon dioxide, a greenhouse gas, into the atmosphere. Rather than contribute to global climate change, producers could convert carbon dioxide to a wide variety of hydrocarbons, but this makes sense to do only when using solar energy.

Dual catalysts may be the key to efficiently turning carbon dioxide and water vapor into methane and other hydrocarbons using titania nanotubes and solar power, according to Penn State researchers.

Related Articles


Burning fossil fuels like oil, gas and coal release large amounts of carbon dioxide, a greenhouse gas, into the atmosphere. Rather than contribute to global climate change, producers could convert carbon dioxide to a wide variety of hydrocarbons, but this makes sense to do only when using solar energy.

"Recycling of carbon dioxide via conversion into a high energy-content fuel, suitable for use in the existing hydrocarbon-based energy infrastructure, is an attractive option, however the process is energy intense and useful only if a renewable energy source can be used for the purpose," the researchers note in a recent issue of Nano Letters.

Craig A. Grimes, professor of electrical engineering and his team used titanium dioxide nanotubes doped with nitrogen and coated with a thin layer of both copper and platinum to convert a mixture of carbon dioxide and water vapor to methane. Using outdoor, visible light, they reported a 20-times higher yield of methane than previously published attempts conducted in laboratory conditions using intense ultraviolet exposures.

The chemical conversion of water and carbon dioxide to methane is simple on paper -- one carbon dioxide molecule and two water molecules become one methane molecule and two oxygen molecules. However, for the reaction to occur, at least eight photons are required for each molecule.

"Converting carbon dioxide and water to methane using photocatalysis is an appealing idea, but historically, attempts have had very low conversion rates," said Grimes who is also a member of Penn State's Materials Research Institute. "To get significant hydrocarbon reaction yields requires an efficient photocatalyst that uses the maximum energy available in sunlight."

The team, which also included Oomman K. Varghese and Maggie Paulose, Materials Research Institute research scientists and Thomas J. LaTempa, graduate student in electrical engineering, used natural sunlight to test their nanotubes in a chamber containing a mix of water vapor and carbon dioxide. They exposed the co-catalyst sensitized nanotubes to sunlight for 2.5 to 3.5 hours when the sun produced between 102 and 75 milliwatts for each square centimeter exposed.

The researchers found that nanotubes annealed at 600 degrees Celsius and coated with copper yielded the highest amounts of hydrocarbons and that the same nanotubes coated with platinum actually yielded more hydrogen, while the copper coated nanotubes produced more carbon monoxide. Both hydrogen and carbon monoxide are normal intermediate steps in the process and as the building blocks of syngas, can be used to make liquid hydrocarbon fuels.

When the team used a nanotube array with about half the surface coated in copper and the other half in platinum, they enhanced the hydrocarbon production and eliminated carbon monoxide. The yield for these dual catalyst nanotubes was 163 parts per million hydrocarbons an hour for each square centimeter. The yield from titania nanotubes without either copper or platinum catalysts is only about 10 parts per million.

"If we uniformly coated the surface of the nanotube arrays with copper oxide, I think we could greatly improve the yield," said Grimes.

Grimes also found that lengthening the titanium dioxide tubes, which for other applications increases yield, does not improve results.

"We think that distribution of the sputtered catalyst nanoparticles is at the top surface of the nanotubes and not inside and that is why increased length does not improve the reaction," says Grimes.

Although all these experiments were done with nitrogen-doped titanium dioxide nanotubes, the researchers conclude that the nitrogen did not enhance the conversion of carbon dioxide to hydrocarbons. The catalysts, however, did shift the reaction from one that used only the energy in ultraviolet light to one that used other wavelengths of visible light and therefore more of the sun's energy.

The researchers are now working on converting their batch reactor into a continuous flow-through design that they believe will significantly increase yields.

The researchers have filed a provisional patent on this work.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Environmentally-friendly Energy: Sunlight Turns Carbon Dioxide To Methane." ScienceDaily. ScienceDaily, 8 March 2009. <www.sciencedaily.com/releases/2009/03/090305102719.htm>.
Penn State. (2009, March 8). Environmentally-friendly Energy: Sunlight Turns Carbon Dioxide To Methane. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/03/090305102719.htm
Penn State. "Environmentally-friendly Energy: Sunlight Turns Carbon Dioxide To Methane." ScienceDaily. www.sciencedaily.com/releases/2009/03/090305102719.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins