Featured Research

from universities, journals, and other organizations

Link Between Type 1 Diabetes And Common Viral Infection Suggested By Genetic Mutations

Date:
March 6, 2009
Source:
University of Cambridge
Summary:
Scientists have discovered four rare mutations of a gene associated with type 1 diabetes (T1D) that reduce the risk of developing the disease. Their findings, published in the journal Science, suggest a link between T1D and the enterovirus (a common virus that enters via the gastrointestinal tract but is often non-symptomatic).

Scientists from Cambridge University have discovered four rare mutations of a gene associated with type 1 diabetes (T1D) that reduce the risk of developing the disease. Their findings, published March 5 in the journal Science Express, suggest a link between T1D and the enterovirus (a common virus that enters via the gastrointestinal tract but is often non-symptomatic).

Everyone carries the IFIH1 gene, which plays a role in the body's antiviral responses. Importantly, it is also located in the region of the human genome associated with T1D, an autoimmune disorder which results in the body attacking its own insulin-producing pancreatic cells. The IFIH1 gene codes for a protein that recognizes the presence of viruses in the cell and controls immune activation. It is within this gene that scientists have identified four gene variants that protect against T1D.

Enteroviruses are well known to be associated with T1D: enterovirus infections are more common among newly diagnosed T1D patients and pre-diabetic subjects than in the general population and often precede the appearance of biological markers for pre-diabetes. However, no one knows if these infections are a cause of type 1 diabetes.

The study, which was conducted at the Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, establishes that the IFIH1 protein is involved in T1D, highlighting a molecular pathway by which enterovirus infections may contribute to the development of the disease. The four rare variants they identified, which are predicted to reduce function of the IFIH1 protein, consistently decrease the risk of T1D, rather than predispose to it. This suggests a model where normal immune activation caused by enterovirus infection and mediated by IFIH1 protein stimulates autoimmunity that eventually leads to T1D.

Professor John Todd, senior author on the study, said: "We have been able to pin-point one particular gene among a long list of candidates. Now we and others can begin to study the biology of IFIH1 in the context of type 1 diabetes knowing that it is part of the cause of the disease."

In the past three years genome-wide association studies have been a major success, revealing dozens of regions in the human genome that harbour genes which predispose individuals to various diseases, such as diabetes or cancers. Nevertheless, as disease-associated regions may contain several genes with different functions, scientists rarely know which gene or gene variant (mutations of the gene) in these regions cause the disease.

In order to overcome this limitation, the scientists searched for variants that had obvious biological effects, e.g. those affecting gene expression or protein function. They hypothesized that if a gene harbors several such variants, then it is likely to be causative. Most of such variants are rare in the population and are not tested in genome-wide association studies. Nevertheless, they could be discovered by sequencing (examining the sequence of the pairs of nucleotides which make up a gene).

The researchers studied 10 candidate genes associated with T1D. Using a novel technique (high throughput sequencing of DNA pools) in collaboration with 454 Life Sciences, a Roche company, they examined the DNA of 480 T1D patients and 480 healthy controls. This approach allowed them to not only discover several rare variants associated with T1D, but also to accurately measure their frequency in the pools of patients and controls.

The researchers then genotyped approximately 30,000 individuals who were either T1D patients, controls or family members and proved that four rare variants or versions that reside in the gene IFIH1 reduce the risk of developing T1D.

The study demonstrates that re-sequencing genes associated with diseases can help pinpoint the specific gene or genes that lead to the disease.

"Finding several new rare disease variants with clear biological functions was crucial. Not only has this proved that IFIH1 is involved in type 1 diabetes, it also gave us clues to understand the mechanism" said Dr. Sergey Nejentsev, Royal Society Research Fellow at the Department of Medicine, the first author of the study. He added: "This experiment shows the way to identify causative genes contributing to various common diseases."


Story Source:

The above story is based on materials provided by University of Cambridge. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nejentsev et al. Rare Variants of IFIH1, a Gene Implicated in Antiviral Responses, Protect Against Type 1 Diabetes. Science, March 6, 2009

Cite This Page:

University of Cambridge. "Link Between Type 1 Diabetes And Common Viral Infection Suggested By Genetic Mutations." ScienceDaily. ScienceDaily, 6 March 2009. <www.sciencedaily.com/releases/2009/03/090305141635.htm>.
University of Cambridge. (2009, March 6). Link Between Type 1 Diabetes And Common Viral Infection Suggested By Genetic Mutations. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2009/03/090305141635.htm
University of Cambridge. "Link Between Type 1 Diabetes And Common Viral Infection Suggested By Genetic Mutations." ScienceDaily. www.sciencedaily.com/releases/2009/03/090305141635.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins