Featured Research

from universities, journals, and other organizations

Nanotechnology: Bristly Spheres As Capsules for Drugs

Date:
March 9, 2009
Source:
Wiley-Blackwell
Summary:
Researchers have produced amphiphilic hybrid particles made of a water-insoluble inorganic nanoparticle at the core surrounded by a bristle-like layer of hydrophilic polymer chains. The polymer-coated spheres offer a simple method for the controlled production of superstructures, such as vesicles to be used to encapsulate drugs or as contrast agents.

Amphiphilic molecules, which have one water-friendly (hydrophilic) end and one water-repellant (hydrophobic) end, spontaneously aggregate in aqueous solutions to make superstructures like capsules or bilayers. This phenomenon is responsible for the effects of detergents and soaps. Dirt is enclosed in little capsules of surfactant, which makes it water-soluble.

Cell membranes are also based on this principle: they are simply lipid bilayers, an aggregation of lipid molecules that line up with their hydrophobic tails all together and their hydrophilic heads protruding into the aqueous environment.

As reported in the journal Angewandte Chemie, researchers at the Universities of Hamburg and Freiburg (Germany) led by Horst Weller and Stephan Fφrster have now produced amphiphilic hybrid particles made of a water-insoluble inorganic nanoparticle at the core surrounded by a bristle-like layer of hydrophilic polymer chains.

The inorganic nanoparticles are made of cadmium selenide and cadmium sulfide. Polyethylene oxide chains are attached to the nanoparticles through amino groups. The nature of the superstructures formed in aqueous solution depends on how densely the surfaces of the little spheres are covered with the polymer "bristles". If they are densely packed, the hybrid particles remain in solution as individuals, because the bristles repel each other. If the bristles are less dense, dimers and trimers are formed; still sparser bristles result in long wormlike aggregates of many particles that grow into a network through occasional Y-shaped branches.

For the particles to aggregate in this way, the bristles on the surfaces of the inorganic cores have to reorganize significantly: they move aside a little to free up points of contact so the cores can attach to each other. Aggregation then continues until the resulting ensemble of cores is, as a whole, surrounded by a sufficiently dense layer of bristles, which acts as a shield toward additional particles.

Cores with an even smaller number of polymer bristles aggregate into extended curved layers that close themselves off into capsule-shaped vesicles. The walls of the vesicles consist of a monolayer of the bristly particles.

The polymer-coated spheres offer a new, simple method for the controlled production of superstructures. The vesicles could be used to encapsulate drugs, for example, as contrast agents, or as ordered liquid crystalline phases for the production of nanostructured hybrid materials.


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephan Fφrster. Micelle and Vesicle Formation of Amphiphilic Nanoparticles. Angewandte Chemie International Edition, DOI: 10.1002/anie.200805158

Cite This Page:

Wiley-Blackwell. "Nanotechnology: Bristly Spheres As Capsules for Drugs." ScienceDaily. ScienceDaily, 9 March 2009. <www.sciencedaily.com/releases/2009/03/090306103639.htm>.
Wiley-Blackwell. (2009, March 9). Nanotechnology: Bristly Spheres As Capsules for Drugs. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2009/03/090306103639.htm
Wiley-Blackwell. "Nanotechnology: Bristly Spheres As Capsules for Drugs." ScienceDaily. www.sciencedaily.com/releases/2009/03/090306103639.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) — Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins