Featured Research

from universities, journals, and other organizations

Artificial Photosynthesis: Turning Sunlight Into Liquid Fuels Moves A Step Closer

Date:
March 12, 2009
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Through photosynthesis, plants use sunlight to convert water and carbon dioxide into sugars they use for fuel. Scientists want to create an artificial version of photosynthesis to produce liquid fuels for transportation. Chemists have taken an important step towards this goal with the discovery that cobalt oxide nanocrystals can effectively carry out the critical photosynthetic reaction of splitting water molecules.

Under the fuel through artificial photosynthesis scenario, nanotubes embedded within a membrane would act like green leaves, using incident solar radiation (Hณ) to split water molecules (H2O), freeing up electrons and oxygen (O2) that then react with carbon dioxide (CO2) to produce a fuel, shown here as methanol (CH3OH). The result is a renewable green energy source that also helps scrub the atmosphere of excessive carbon dioxide from the burning of fossil fuels.
Credit: Illustration by Flavio Robles, Berkeley Lab Public Affairs

For millions of years, green plants have employed photosynthesis to capture energy from sunlight and convert it into electrochemical energy. A goal of scientists has been to develop an artificial version of photosynthesis that can be used to produce liquid fuels from carbon dioxide and water.

Researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have now taken a critical step towards this goal with the discovery that nano-sized crystals of cobalt oxide can effectively carry out the critical photosynthetic reaction of splitting water molecules.

“Photooxidation of water molecules into oxygen, electrons and protons (hydrogen ions) is one of the two essential half reactions of an artifical photosynthesis system - it provides the electrons needed to reduce carbon dioxide to a fuel,” said Heinz Frei, a chemist with Berkeley Lab’s Physical Biosciences Division, who conducted this research with his postdoctoral fellow Feng Jiao. “Effective photooxidation requires a catalyst that is both efficient in its use of  solar photons and fast enough to keep up with solar flux in order to avoid wasting those photons. Clusters of cobalt oxide nanocrystals are sufficiently efficient and fast, and are also robust (last a long time) and abundant. They perfectly fit the bill.”

Frei and Jiao have reported the results of their study in the journal Angewandte Chemie. This research was performed through the Helios Solar Energy Research Center (Helios SERC), a scientific program at Berkeley Lab under the direction of Paul Alivisatos, which is aimed at developing fuels from sunlight. Frei serves as deputy director of Helios SERC.

Artificial photosynthesis for the production of liquid fuels offers the promise of a renewable and carbon-neutral source of transportation energy, meaning it would not contribute to the global warming that results from the burning of oil and coal. The idea is to improve upon the process that has long-served green plants and certain bacteria by integrating into a single platform light-harvesting systems that can capture solar photons and catalytic systems that can oxidize water - in other words, an artificial leaf.

“To take advantage of the flexibility and precision by which light absorption, charge transport and catalytic properties can be controlled by discrete inorganic molecular structures, we have been working with polynuclear metal oxide nanoclusters in silica,” Frei said. “In earlier work, we found that iridium oxide was efficient and fast enough to do the job, but iridium is the least abundant metal on earth and not suitable for use on a very large scale. We needed a metal that was equally effective but far more abundant.”

Green plants perform the photooxidation of water molecules within a complex of proteins called Photosystem II, in which manganese-containing enzymes serve as the catalyst. Manganese-based organometallic complexes modeled off Photosystem II have shown some promise as photocatalysts for water oxidation but some suffer from being water insoluble and none are very robust.

In looking for purely inorganic catalysts that would dissolve in water and would be far more robust than biomimetic materials, Frei and Jiao turned to cobalt oxide, a highly abundant material that is an an important industrial catalyst. When Frei and Jiao tested micron-sized particles of cobalt oxide, they found the particles were inefficient and not nearly fast enough to serve as photocatalysts. However, when they nano-sized the particles it was another story.

“The yield for clusters of cobalt oxide (Co3O4) nano-sized crystals was about 1,600 times higher than for micron-sized particles,” said Frei, “and the turnover frequency (speed) was about 1,140 oxygen molecules per second per cluster, which is commensurate with solar flux at ground level (approximately 1,000 Watts per square meter).”

Frei and Jiao used mesoporous silica as their scaffold, growing their cobalt nanocrystals within the naturally parallel nanoscale channels of the silica via a technique known as “wet impregnation.” The best performers were rod-shaped crystals measuring 8 nanometers in diameter and 50 nanometers in length, which were interconnected by short bridges to form bundled clusters. The bundles were shaped like a sphere with a diameter of 35 nanometers. While the catalytic efficiency of the cobalt metal itself was important, Frei said the major factor behind the enhanced efficiency and speed of the bundles was their size.

“We suspect that the comparatively very large internal area of these 35 nanometer bundles (where catalysis takes place) was the main factor behind their increased efficiency,” he said, “because when we produced larger bundles (65 nanometer diameters), the internal area was reduced and the bundles lost much of that efficiency gain.”

Frei and Jiao will be conducting further studies to gain a better understanding of why their cobalt oxide nanocrystal clusters are such efficient and high-speed photocatalysts and also looking into other metal oxide catalysts. The next big step, however, will be to integrate the water oxidation half reaction with the carbon dioxide reduction step in an artificial leaf type system.

“The efficiency, speed and size of our cobalt oxide nanocrystal clusters are comparable to Photosystem II,” said Frei. “When you factor in the abundance of cobalt oxide, the stability of the nanoclusters under use, the modest overpotential and mild pH and temperature conditions, we believe we have a promising catalytic component for developing a viable integrated solar fuel conversion system. This is the next important challenge in the field of artificial photosynthesis for fuel production.”

The Helios Solar Energy Research Center is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Feng Jiao, Heinz Frei. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts. Angewandte Chemie, Volume 121, Issue 10 , Pages1873 - 1876 DOI: 10.1002/ange.200805534

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Artificial Photosynthesis: Turning Sunlight Into Liquid Fuels Moves A Step Closer." ScienceDaily. ScienceDaily, 12 March 2009. <www.sciencedaily.com/releases/2009/03/090311103646.htm>.
DOE/Lawrence Berkeley National Laboratory. (2009, March 12). Artificial Photosynthesis: Turning Sunlight Into Liquid Fuels Moves A Step Closer. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2009/03/090311103646.htm
DOE/Lawrence Berkeley National Laboratory. "Artificial Photosynthesis: Turning Sunlight Into Liquid Fuels Moves A Step Closer." ScienceDaily. www.sciencedaily.com/releases/2009/03/090311103646.htm (accessed September 22, 2014).

Share This



More Earth & Climate News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) — Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
Inside London's Massive Sewer Tunnel Project

Inside London's Massive Sewer Tunnel Project

AP (Sep. 22, 2014) — Billions of dollars are being spent on a massive super sewer to take away London's vast output of waste, which is endangering the River Thames. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Washed-Up 'Alien Hairballs' Are Actually Algae

Washed-Up 'Alien Hairballs' Are Actually Algae

Newsy (Sep. 22, 2014) — Green balls of algae washed up on Sydney, Australia's Dee Why Beach. Video provided by Newsy
Powered by NewsLook.com
Was The Biggest Climate March In History Underreported?

Was The Biggest Climate March In History Underreported?

Newsy (Sep. 22, 2014) — The People's Climate March in New York City drew more than 300,000 people, possibly a record-breaking number. Was the march underreported? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins