Featured Research

from universities, journals, and other organizations

Genetic Mechanism In Mole Rats Can Be Targeted In Cancer Research

Date:
March 23, 2009
Source:
University of Haifa
Summary:
Cellular mechanisms that subterranean mole rats have developed in order to survive the low levels of oxygen in their underground habitat are similar to the mechanisms used by tumors to survive and progress in humans. Based on a new study, the mole rat can represent the human tumor in research, and the gene targeted in mole rats can be targeted for development of anti-cancer drugs.

Researchers have found that subterranean mole rats have developed cellular mechanisms in order to survive the low levels of oxygen in their underground habitat -- mechanisms that are similar to those used by tumors to survive and progress in humans.
Credit: Image courtesy of University of Haifa

Cellular mechanisms that subterranean mole rats have developed in order to survive the low levels of oxygen in their underground habitat are similar to the mechanisms used by tumors to survive and progress in humans. Based on a new study, the mole rat can represent the human tumor in research, and the gene targeted in mole rats can be targeted for development of anti-cancer drugs.

Related Articles


This landmark discovery was revealed in a new study carried out by researchers from the Institute of Evolution at the University of Haifa and the Functional Genomics Center at the University of Illinois.

"When we understand how the subterranean mole rat developed these mechanisms for survival, we may be able to understand why they are so destructive in humans," Prof. Aaron Avivi of the University of Haifa said.

The biological significance of the blind subterranean mole rat was recognized about 50 years ago by Prof. Eviatar Nevo, who also pioneered biological studies of the organism. The current study, led by Prof. Aaron Avivi from the Institute of Evolution at the University of Haifa and Dr. Mark Band from the University of Illinois, is supported by a grant from the U.S-Israel Binational Science Foundation (BSF), and has just been published in the online FASEB Journal.

Based on the new study, the mole rat can represent the human tumor in research, and the gene targeted in mole rats can be targeted for possible development of anti-cancer drugs. It is therefore predicted that understanding the survival mechanism in the blind subterranean mole rat can help in the advancement of cancer research. "When we understand how the subterranean mole rat developed these mechanisms for survival, we may be able to understand why they are so destructive in humans," Prof. Avivi of the University of Haifa pointed out.

Experiments were conducted on groups of hypoxia-tolerant mole rats and hypoxia-intolerant "regular" rats. A group of each species was exposed to normal levels of oxygen while other groups were exposed to low oxygen levels, ranging from 3 to 10 percent. The gene BNIP3, which becomes active in the regular rats to protect their bodies from low oxygen and to prevent resulting damage, was shown to be active in heart and skeletal muscles. On the other hand, in the mole rats that tolerate low levels of oxygen, the gene was less expressed and less active, suggesting and supporting previous findings by these scientists that on a physiological level their cells and tissues do not become hypoxic.

The hypoxia-regulated pattern of BNIP3 expression and the gene's activity in the mole rat echoes its behavior in cancer cells. In both cases waves of normal oxygen levels and hypoxic levels lead to changes in the regulation of hypoxia-induced genes behavior. In mole rats this fluctuation is due to rainfalls that flood their underground tunnels, limiting the availability of oxygen and, moreover, forcing them to rebuild the tunnels and exhaust the limited oxygen; in tumor cells it occurs as they divide faster than blood vessels, which supply oxygen, sprouting into new cells.

Among a growing list of hypoxia-induced genes that were studied in the mole rat by Prof. Avivi and his colleagues and collaborators, this is the third gene that shows a similar pattern of expression as in cancer. In the past it has also been revealed that VEGF (Vascular Endothelial Growth Factor - a major growth factor that regulates the growth of new blood vessels) and p53 (a "master" gene, responsible for activating a battery of other genes engaged in either programmed cell death [apoptosis] or DNA-repair in cells) exhibit a similar mode of action in mole rats and in cancer growths, which is why they are so destructive in human cancer growths, Prof. Avivi pointed out.


Story Source:

The above story is based on materials provided by University of Haifa. Note: Materials may be edited for content and length.


Cite This Page:

University of Haifa. "Genetic Mechanism In Mole Rats Can Be Targeted In Cancer Research." ScienceDaily. ScienceDaily, 23 March 2009. <www.sciencedaily.com/releases/2009/03/090315223845.htm>.
University of Haifa. (2009, March 23). Genetic Mechanism In Mole Rats Can Be Targeted In Cancer Research. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/03/090315223845.htm
University of Haifa. "Genetic Mechanism In Mole Rats Can Be Targeted In Cancer Research." ScienceDaily. www.sciencedaily.com/releases/2009/03/090315223845.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins