Featured Research

from universities, journals, and other organizations

New Material Could Lead To Faster Chips: Graphene May Solve Communications Speed Limit

Date:
March 30, 2009
Source:
Massachusetts Institute of Technology
Summary:
New research findings could lead to microchips that operate at much higher speeds than is possible with today's standard silicon chips, leading to cell phones and other communications systems that can transmit data much faster.

The graphene microchip.
Credit: Photo / Donna Coveney

New research findings at MIT could lead to microchips that operate at much higher speeds than is possible with today's standard silicon chips, leading to cell phones and other communications systems that can transmit data much faster.

The key to the superfast chips is the use of a material called graphene, a form of pure carbon that was first identified in 2004. Researchers at other institutions have already used the one-atom-thick layer of carbon atoms to make prototype transistors and other simple devices, but the latest MIT results could open up a range of new applications.

The MIT researchers built an experimental graphene chip known as a frequency multiplier, meaning it is capable of taking an incoming electrical signal of a certain frequency — for example, the clock speed that determines how fast a computer chip can carry out its computations — and producing an output signal that is a multiple of that frequency. In this case, the MIT graphene chip can double the frequency of an electromagnetic signal.

Frequency multipliers are widely used in radio communications and other applications. But existing systems require multiple components, produce "noisy" signals that require filtering and consume large power, whereas the new graphene system has just a single transistor and produces, in a highly efficient manner, a clean output that needs no filtering.

The findings are being reported in a paper in the May issue of Electron Device Letters and were also reported last week at the American Physical Society meeting by Tomαs Palacios, assistant professor in MIT's Department of Electrical Engineering and Computer Science and a core member of the Microsystems Technology Laboratories. The work was done by Palacios along with EECS Assistant Professor Jing Kong and two of their students, Han Wang and Daniel Nezich.

"In electronics, we're always trying to increase the frequency," Palacios says, in order to make "faster and faster computers" and cellphones that can send data at higher rates, for example. "It's very difficult to generate high frequencies above 4 or 5 gigahertz," he says, but the new graphene technology could lead to practical systems in the 500 to 1,000 gigahertz range.

"Researchers have been trying to find uses for this material since its discovery in 2004," he says. "I believe this application will have tremendous implications in high-frequency communications and electronics." By running several of the frequency-doubling chips in series, it should be possible to attain frequencies many times higher than are now feasible.

While the work is still at the laboratory stage, Palacios says, because it is mostly based on relatively standard chip processing technology he thinks developing it to a stage that could become a commercial product "may take a year of work, maximum two." This project is currently being partially funded by the MIT Institute for Soldier Nanotechnology and by the Interconnect Focus Center program, and it has already attracted the interest of "many other offices in the federal government and major chip-making companies," according to Palacios.

Graphene is related to the better-known buckyballs and carbon nanotubes, which also are made of one-atom-thick sheets of carbon. But in those materials, the carbon sheets are rolled up in the form of a tube or a ball. While physicists had long speculated that flat sheets of the material should be theoretically possible, some had doubted that it could ever remain stable in the real world.

"In physics today, graphene is, arguably, the most exciting topic," Palacios says. It is the strongest material ever discovered, and also has a number of unsurpassed electrical properties, such as "mobility" — the ease with which electrons can start moving in the material, key to use in electronics — which is 100 times that of silicon, the standard material of computer chips.

One key factor in enabling widespread use of graphene will be perfecting methods for making the material in sufficient quantity. The material was first identified, and most of the early work was based on, using "sticky tape technology," Palacios explains. That involves taking a block of graphite, pressing a piece of sticky tape against it, peeling it off and then applying the tape to a wafer of silicon or other material.

But Kong has been developing a method for growing entire wafers of graphene directly, which could make the material practical for electronics. Kong and Palacios' groups are currently working to transfer the frequency multipliers to these new graphene wafers.

"Graphene will play a key role in future of electronics," Palacios says. "We just need to identify the right devices to take full advantage of its outstanding properties. Frequency multipliers could be one of these devices."

 


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "New Material Could Lead To Faster Chips: Graphene May Solve Communications Speed Limit." ScienceDaily. ScienceDaily, 30 March 2009. <www.sciencedaily.com/releases/2009/03/090324081443.htm>.
Massachusetts Institute of Technology. (2009, March 30). New Material Could Lead To Faster Chips: Graphene May Solve Communications Speed Limit. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/03/090324081443.htm
Massachusetts Institute of Technology. "New Material Could Lead To Faster Chips: Graphene May Solve Communications Speed Limit." ScienceDaily. www.sciencedaily.com/releases/2009/03/090324081443.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins