Featured Research

from universities, journals, and other organizations

Unexpected Behavior Of Quantum Dots When Combining To Form Molecules

Date:
April 4, 2009
Source:
Universitat Jaume I
Summary:
A study has demonstrated that the behavior of quantum dots is different from that posited by atomic physics so far, and this is due to the spin of the electron. The study reveals that the behavior of quantum dots (sort of artificial atoms created with semiconductor materials) is different from that of natural atoms in similar conditions, when they combine to form molecules.

A study has demonstrated that the behaviour of quantum dots is different from that posited by atomic physics so far, and this is due to the spin of the electron. 

This is one of the findings of the theoretical study carried out by Juan Ignacio Climente, a Ramσn y Cajal researcher in the Department of Physical and Analytical Chemistry at the Universitat Jaume I (UJI), and other researchers from the National Research Council of Canada.

The study reveals that the behaviour of quantum dots (sort of artificial atoms created with semiconductor materials) is different from that of natural atoms in similar conditions, when they combine to form molecules.

The experiments, conducted by the staff of the Naval Research Laboratory in Washington, have proved that quantum dots that use holes (electrons with a positive charge and a larger mass) instead of electrons (which have a negative charge) achieve an antibonding molecular ground state, in contrast to natural atoms, which need an extra supply of energy to achieve this state.

The new contribution enables researchers to influence the behaviour of quantum dots, and to give them convenient properties. That is why the research described marks a breakthrough in the study of fundamental physics, since it makes it possible to examine in the laboratory situations that could not be studied using natural atoms.

Today, quantum dots are used in optoelectronics for manufacturing lasers that emit light at a frequency that is in the infrared spectrum, thus obtaining greater efficiency; in biomedicine, as biomarkers, to offer clearer images; and in energy-efficient transistors, which are charged with only one electron.

The study results have served to open new research lines. Although it is still too early to know all the possible applications, there may be some in fields such as solar energy, where there is experimentation with third-generation panels (more efficient and economical than those used to date); computer memory devices with a higher density that consume less; treatment of diseases such as cancer, for which a quantum dot may be injected into the body in such a way that it finds the tumoral cell and is then heated with infrared light until the cell is killed; and in new lighting systems offering greater efficiency.


Story Source:

The above story is based on materials provided by Universitat Jaume I. Note: Materials may be edited for content and length.


Journal Reference:

  1. Doty et al. Antibonding Ground States in InAs Quantum-Dot Molecules. Physical Review Letters, 2009; 102 (4): 047401 DOI: 10.1103/PhysRevLett.102.047401

Cite This Page:

Universitat Jaume I. "Unexpected Behavior Of Quantum Dots When Combining To Form Molecules." ScienceDaily. ScienceDaily, 4 April 2009. <www.sciencedaily.com/releases/2009/04/090401102946.htm>.
Universitat Jaume I. (2009, April 4). Unexpected Behavior Of Quantum Dots When Combining To Form Molecules. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/04/090401102946.htm
Universitat Jaume I. "Unexpected Behavior Of Quantum Dots When Combining To Form Molecules." ScienceDaily. www.sciencedaily.com/releases/2009/04/090401102946.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins