Featured Research

from universities, journals, and other organizations

Unexpected Behavior Of Quantum Dots When Combining To Form Molecules

Date:
April 4, 2009
Source:
Universitat Jaume I
Summary:
A study has demonstrated that the behavior of quantum dots is different from that posited by atomic physics so far, and this is due to the spin of the electron. The study reveals that the behavior of quantum dots (sort of artificial atoms created with semiconductor materials) is different from that of natural atoms in similar conditions, when they combine to form molecules.

A study has demonstrated that the behaviour of quantum dots is different from that posited by atomic physics so far, and this is due to the spin of the electron. 

Related Articles


This is one of the findings of the theoretical study carried out by Juan Ignacio Climente, a Ramσn y Cajal researcher in the Department of Physical and Analytical Chemistry at the Universitat Jaume I (UJI), and other researchers from the National Research Council of Canada.

The study reveals that the behaviour of quantum dots (sort of artificial atoms created with semiconductor materials) is different from that of natural atoms in similar conditions, when they combine to form molecules.

The experiments, conducted by the staff of the Naval Research Laboratory in Washington, have proved that quantum dots that use holes (electrons with a positive charge and a larger mass) instead of electrons (which have a negative charge) achieve an antibonding molecular ground state, in contrast to natural atoms, which need an extra supply of energy to achieve this state.

The new contribution enables researchers to influence the behaviour of quantum dots, and to give them convenient properties. That is why the research described marks a breakthrough in the study of fundamental physics, since it makes it possible to examine in the laboratory situations that could not be studied using natural atoms.

Today, quantum dots are used in optoelectronics for manufacturing lasers that emit light at a frequency that is in the infrared spectrum, thus obtaining greater efficiency; in biomedicine, as biomarkers, to offer clearer images; and in energy-efficient transistors, which are charged with only one electron.

The study results have served to open new research lines. Although it is still too early to know all the possible applications, there may be some in fields such as solar energy, where there is experimentation with third-generation panels (more efficient and economical than those used to date); computer memory devices with a higher density that consume less; treatment of diseases such as cancer, for which a quantum dot may be injected into the body in such a way that it finds the tumoral cell and is then heated with infrared light until the cell is killed; and in new lighting systems offering greater efficiency.


Story Source:

The above story is based on materials provided by Universitat Jaume I. Note: Materials may be edited for content and length.


Journal Reference:

  1. Doty et al. Antibonding Ground States in InAs Quantum-Dot Molecules. Physical Review Letters, 2009; 102 (4): 047401 DOI: 10.1103/PhysRevLett.102.047401

Cite This Page:

Universitat Jaume I. "Unexpected Behavior Of Quantum Dots When Combining To Form Molecules." ScienceDaily. ScienceDaily, 4 April 2009. <www.sciencedaily.com/releases/2009/04/090401102946.htm>.
Universitat Jaume I. (2009, April 4). Unexpected Behavior Of Quantum Dots When Combining To Form Molecules. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2009/04/090401102946.htm
Universitat Jaume I. "Unexpected Behavior Of Quantum Dots When Combining To Form Molecules." ScienceDaily. www.sciencedaily.com/releases/2009/04/090401102946.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) — A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) — Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) — Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360° Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360° Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) — Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins