Featured Research

from universities, journals, and other organizations

Unexpected Behavior Of Quantum Dots When Combining To Form Molecules

Date:
April 4, 2009
Source:
Universitat Jaume I
Summary:
A study has demonstrated that the behavior of quantum dots is different from that posited by atomic physics so far, and this is due to the spin of the electron. The study reveals that the behavior of quantum dots (sort of artificial atoms created with semiconductor materials) is different from that of natural atoms in similar conditions, when they combine to form molecules.

A study has demonstrated that the behaviour of quantum dots is different from that posited by atomic physics so far, and this is due to the spin of the electron. 

Related Articles


This is one of the findings of the theoretical study carried out by Juan Ignacio Climente, a Ramσn y Cajal researcher in the Department of Physical and Analytical Chemistry at the Universitat Jaume I (UJI), and other researchers from the National Research Council of Canada.

The study reveals that the behaviour of quantum dots (sort of artificial atoms created with semiconductor materials) is different from that of natural atoms in similar conditions, when they combine to form molecules.

The experiments, conducted by the staff of the Naval Research Laboratory in Washington, have proved that quantum dots that use holes (electrons with a positive charge and a larger mass) instead of electrons (which have a negative charge) achieve an antibonding molecular ground state, in contrast to natural atoms, which need an extra supply of energy to achieve this state.

The new contribution enables researchers to influence the behaviour of quantum dots, and to give them convenient properties. That is why the research described marks a breakthrough in the study of fundamental physics, since it makes it possible to examine in the laboratory situations that could not be studied using natural atoms.

Today, quantum dots are used in optoelectronics for manufacturing lasers that emit light at a frequency that is in the infrared spectrum, thus obtaining greater efficiency; in biomedicine, as biomarkers, to offer clearer images; and in energy-efficient transistors, which are charged with only one electron.

The study results have served to open new research lines. Although it is still too early to know all the possible applications, there may be some in fields such as solar energy, where there is experimentation with third-generation panels (more efficient and economical than those used to date); computer memory devices with a higher density that consume less; treatment of diseases such as cancer, for which a quantum dot may be injected into the body in such a way that it finds the tumoral cell and is then heated with infrared light until the cell is killed; and in new lighting systems offering greater efficiency.


Story Source:

The above story is based on materials provided by Universitat Jaume I. Note: Materials may be edited for content and length.


Journal Reference:

  1. Doty et al. Antibonding Ground States in InAs Quantum-Dot Molecules. Physical Review Letters, 2009; 102 (4): 047401 DOI: 10.1103/PhysRevLett.102.047401

Cite This Page:

Universitat Jaume I. "Unexpected Behavior Of Quantum Dots When Combining To Form Molecules." ScienceDaily. ScienceDaily, 4 April 2009. <www.sciencedaily.com/releases/2009/04/090401102946.htm>.
Universitat Jaume I. (2009, April 4). Unexpected Behavior Of Quantum Dots When Combining To Form Molecules. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2009/04/090401102946.htm
Universitat Jaume I. "Unexpected Behavior Of Quantum Dots When Combining To Form Molecules." ScienceDaily. www.sciencedaily.com/releases/2009/04/090401102946.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) — British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) — A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) — Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins