Featured Research

from universities, journals, and other organizations

Potential New Target For Treatment Of Hormone Refractory Prostate Cancer

Date:
April 14, 2009
Source:
Cell Press
Summary:
A new study identifies a protein that modifies the androgen receptor and influences its ability to regulate target genes linked with the progression of prostate cancer. The research may also drive creation of new strategies for the treatment of advanced prostate cancer that no longer responds to traditional anti-hormone therapies.

A new study identifies a protein that modifies the androgen receptor (AR) and influences its ability to regulate target genes linked with the progression of prostate cancer. The research, published by Cell Press in the April 7th issue of the journal Cancer Cell, may also drive creation of new strategies for the treatment of advanced prostate cancer that no longer responds to traditional anti-hormone therapies.

Related Articles


The AR is an important mediator for the development and progression of prostate cancer, including the progression to the aggressive and often lethal androgen-independent form of the disease. "Androgen ablation therapy is the most common treatment for advanced prostate cancer," offers senior study author, Dr. Yun Qiu from the University of Maryland School of Medicine. "However, many patients inevitably develop deadly recurrent cancers, which no longer respond to androgen blockade and are resistant to current therapy."

To better understand mechanisms associated with advanced prostate cancer, Dr. Qiu and colleagues performed a screen designed to search for proteins that interact with the AR in hormone-refractory prostate cancer cells. The researchers identified RNF6 as an AR associated protein and demonstrated that RNF6 induced ubiquitination of the AR and promoted AR transcriptional activity. Ubiquitination is a common protein modification that mediates a diverse range of cellular activities. One of the best known functions of ubiquitination is to promote protein degradation. However, ubiquitination of AR by RNF6 appeared to have a stabilizing effect on AR protein.

Importantly, inhibition of RNF6 or interference with ubiquitination of AR altered expression of a specific group of AR target genes and abrogated recruitment of AR and its required coactivators to androgen-responsive regulatory regions in these genes. The researchers went on to show that expression of RNF6 was increased in human prostate cancer tissues that do not respond to androgen ablation and is required for prostate tumor growth under androgen depleted conditions.

Taken together, the findings implicate RNF6 as an important regulator of AR transcriptional activity. "Our work suggests that ubiquitination of AR, and possibly other transcription factors, may function as the scaffold for cofactor recruitment to modulate transcriptional activity and specificity," concludes Dr. Qiu. "Targeting components of the ubiquitination machinery, such as RNF6, may potentially be effective in treatment of advanced prostate cancer."

The researchers include Kexin Xu, University of Maryland School of Medicine, Baltimore, MD; Hermela Shimelis, University of Maryland School of Medicine, Baltimore, MD; Douglas E. Linn, University of Maryland School of Medicine, Baltimore, MD; Richeng Jiang, University of Maryland School of Medicine, Baltimore, MD; Xi Yang, University of Maryland School of Medicine, Baltimore, MD; Feng Sun, University of Maryland School of Medicine, Baltimore, MD; Zhiyong Guo, University of Maryland School of Medicine, Baltimore, MD; Hege Chen, University of Maryland School of Medicine, Baltimore, MD; Wei Li, University of Maryland School of Medicine, Baltimore, MD; Hegang Chen, University of Maryland School of Medicine, Baltimore, MD; Xiangtian Kong, New York University School of Medicine, New York, NY; Jonathan Melamed, New York University School of Medicine, New York, NY; Shengyun Fang, University of Maryland Biotechnology Institute, Baltimore, MD; Zhen Xiao, National Cancer Institute at Frederick, Frederick, MD; Timothy D. Veenstra, National Cancer Institute at Frederick, Frederick, MD; and Yun Qiu, University of Maryland School of Medicine, Baltimore, MD.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xu et al. Regulation of Androgen Receptor Transcriptional Activity and Specificity by RNF6-Induced Ubiquitination. Cancer Cell, 2009; 15 (4): 270-282 DOI: 10.1016/j.ccr.2009.02.021

Cite This Page:

Cell Press. "Potential New Target For Treatment Of Hormone Refractory Prostate Cancer." ScienceDaily. ScienceDaily, 14 April 2009. <www.sciencedaily.com/releases/2009/04/090406132052.htm>.
Cell Press. (2009, April 14). Potential New Target For Treatment Of Hormone Refractory Prostate Cancer. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/04/090406132052.htm
Cell Press. "Potential New Target For Treatment Of Hormone Refractory Prostate Cancer." ScienceDaily. www.sciencedaily.com/releases/2009/04/090406132052.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins