Featured Research

from universities, journals, and other organizations

Mimicry At Molecular Level Protects Genome Integrity

Date:
April 15, 2009
Source:
Scripps Research Institute
Summary:
Mimicry is common in nature, where it is used as a key survival mechanism. Now scientists have discovered molecular mimicry in a genetic integrity pathway, which is implicated in many human diseases, from cancer to neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases.

Mimicry is common in nature, where it is used as a key survival mechanism. Now scientists from The Scripps Research Institute have discovered molecular mimicry in a genetic integrity pathway, which is implicated in many human diseases, from cancer to neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases.

The new study, published in the journal Nature Structural & Molecular Biology, draws new parallels between the Rad60 DNA repair factor and SUMO, a small ubiquitin-like modifier, which are both essential for maintaining genome stability during replication.

"This collaborative study between our laboratory and the Scripps Research Tainer group shows the very first indication of mimicry in the SUMO pathway," said Scripps Research Assistant Professor Michael "Nick" Boddy, Ph.D., who was senior author of the study. "By mimicking a particular surface feature of SUMO, Rad60 competes for binding to an essential enzyme of the SUMO machinery. Thus, Rad60 is a previously undefined member of the SUMO team."

Maintaining genome stability is critical to an organism's survival because genetic defects can promote tumors, aging, and neurodegenerative disease. The genome is particularly vulnerable to spontaneous and damage induced alterations during the replication or S phase of cell division. To ensure the high-fidelity completion of replication, cells engage critical mechanisms that include cell cycle checkpoints and DNA repair.

The fission yeast (Schizosaccharomyces pombe) DNA repair protein Rad60, part of a unique protein family conserved from yeast to humans, is essential for cell viability; cells with a reduced level of Rad60 activity show sensitivity to a range of genotoxic stresses.

The new study combined structural, biochemical and genetic analyses in the two laboratories. The results showed that the two SUMO-like domains on Rad60 each bind to distinct components of the SUMO pathway.

"Even though the backbones in these two Rad60 domains are similar, their surfaces have been altered during evolution in such a way to maintain interaction with different parts of the SUMO pathway," said Boddy, who just received a prestigious Scholar Award from the Leukemia & Lymphoma Society, and who, with colleagues, first identified the Rad60 family in 2003 and was among the first to characterize SUMO in 1996.

In the study, the team used x-ray crystallography to determine the structure of a Rad60 SUMO-like domain at an ultra high-resolution, which is within the top half a percent of all published structures. "This resolution allowed us to develop and use a novel technique utilizing the Scripps Research supercomputer to solve the structure within a few weeks, which would likely have taken years if attempted on a desktop computer," said Andy Arvai a scientific associate in the Tainer lab.

"The structural data allowed us to clearly understand how mimicry takes place and its importance in the SUMO pathway," said Jeff Perry, Ph.D., a senior research associate at Scripps Research and an adjunct professor at Amrita University in India, one of the lead authors of the study. "In this case, we know that changing a single amino acid can break the binding. When you disrupt this interface, it creates instability and once that happens, the integrity of the genome can't be protected."

John Prudden, Ph.D., a Scripps Research scientist and another lead author of the study, added, "SUMO dysfunction is implicated in cancer and aging. Right now there is more to discover in terms of Rad60 mimicry – it's involved in other interactions within the SUMO pathway, so we want to know how it might affect those partners. And because these partners are implicated in disease, understanding the roles of these interactions could be important for the clinical side of things."

The study was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Prudden et al. Molecular mimicry of SUMO promotes DNA repair. Nature Structural & Molecular Biology, 2009; DOI: 10.1038/nsmb.1582

Cite This Page:

Scripps Research Institute. "Mimicry At Molecular Level Protects Genome Integrity." ScienceDaily. ScienceDaily, 15 April 2009. <www.sciencedaily.com/releases/2009/04/090413185731.htm>.
Scripps Research Institute. (2009, April 15). Mimicry At Molecular Level Protects Genome Integrity. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/04/090413185731.htm
Scripps Research Institute. "Mimicry At Molecular Level Protects Genome Integrity." ScienceDaily. www.sciencedaily.com/releases/2009/04/090413185731.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins