Featured Research

from universities, journals, and other organizations

Biocompatible Materials For Rapid Prototyping

Date:
April 18, 2009
Source:
Custom Fit
Summary:
The implantation of integrated biomedical devices to the human body provides challenges to engineering materials science and biology. The demand for metallic and polymeric biomaterials is greatly increasing because of the rapid growth of the world’s population, the increasing proportion of older people and the high functional requirements of younger people.

Biodegradable polymers for rapid prototyping – freedom of shape and flexibility.
Credit: Image courtesy of Custom Fit

The implantation of integrated biomedical devices to the human body provides challenges to engineering materials science and biology. The demand for metallic and polymeric biomaterials is greatly increasing because of the rapid growth of the world’s population, the increasing proportion of older people and the high functional requirements of younger people.

Rapid prototyping (RP) of medical devices and custom-made prosthetic implants is also an area of growing interest and subject to intensive research during the last decades. The unique advantages of layer additive manufacturing open the way for design and development of multi-tasking functional tools with a wide range of applications from dentistry to regenerative medicine and tissue engineering. The current materials of choice for RP are metals, ceramics and limited range of biocompatible polymers. Photopolymers are most attractive for biomedical applications offering mechanical properties versatility and unlimited options in functionalization.

Custom-fit project has been developing during the last 4 years new bio-compatible materials which can be used in its machines. As the machines developed into the project framework have achieved the rapid manufacturing of Multi-Materials Graded Structures, one of the project’s partners, DSM from the Netherlands, has been developing new bio-compatible materials which can be printed with these techniques.

They have achieved the development of photo-curable resins, based on either bio-stable or biodegradable oligomers. These materials are readily processable on commercial RP machines, yielding high quality, biocompatible polymers and demonstrating the versatility and prospective of RP as method of choice for fabrication of biomedical devices. The biostable resins comprised polyester/polyether oligomers bearing acrylate or methacrylate functions while the biodegradable composites have been prepared from methacrylate-functionalized, biocompatible polyesters. The chemical composition, purity and molecular weight distribution of the synthesized oligomers were proven by means of 1H NMR, IR spectroscopy and gel permeation chromatography. The conversion of (meth)acrylate functions after the photo-curing process was estimated by FT-IR. Standard mechanical tests were performed on 40 mm long tensile bars produced by Envisiontec perfactory machine.

Applying polyester/polyether backbone oligomers and reactive diluents DSM adapted composites to the optimal viscosity requirements of the Envisiontec machine. This made it possible to use the full machine capacity and to obtain precise RP-parts as small as 50 microns. Such accuracy was essentially important when targeting a custom-fitting artificial implant. Furthermore the RP processing afforded a high (meth)acrylate conversion of the cured polymers and resulted in materials with a broad range of mechanical properties. The results demonstrated the flexibility of both the composite materials and the production method in fabrication of parts of desired mechanical properties.

In order to obtain biodegradable RP-parts, DSM prepared also methacrylate functionalized biodegradable oligomers and incorporated them in RP-processable composites. Applying different biodegradable polyesters they fine tuned the degradation rate of the final, photo-cured material.

The production method ensured a high conversion of the methacrylate functions. This finding is supported also by the toxicological studies on the cured material where no harmful extractables were found. The tested material meets the requirements of the Intracutaneous Test according ISO 10993-10 guidelines.


Story Source:

The above story is based on materials provided by Custom Fit. Note: Materials may be edited for content and length.


Journal Reference:

  1. Frosch et al. Metallic Biomaterials in Skeletal Repair. European Journal of Trauma, 2006; 32 (2): 149 DOI: 10.1007/s00068-006-6041-1

Cite This Page:

Custom Fit. "Biocompatible Materials For Rapid Prototyping." ScienceDaily. ScienceDaily, 18 April 2009. <www.sciencedaily.com/releases/2009/04/090414084617.htm>.
Custom Fit. (2009, April 18). Biocompatible Materials For Rapid Prototyping. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2009/04/090414084617.htm
Custom Fit. "Biocompatible Materials For Rapid Prototyping." ScienceDaily. www.sciencedaily.com/releases/2009/04/090414084617.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins