Featured Research

from universities, journals, and other organizations

When Atoms Are Getting Close: Shortest Carbon-chlorine Single Bond Detected

Date:
May 5, 2009
Source:
Ludwig-Maximilians-Universitaet Muenchen (LMU)
Summary:
In chemistry as well as in all adjoining sciences, an understanding of chemical bonding is of fundamental importance. Researchers have now been able to detect the shortest single bond ever observed between atoms of chlorine and carbon in a molecule and to clarify the cause of the tight bond.

The description of compounds and interactions between atoms is one of the basic objectives of chemistry. Admittedly, chemical bonding models, which describe these properties very well, already exist. However, any deviation from the normal factors may lead to improving the models further. Chemists with Professor Thomas M. Klapötke at Ludwig-Maximilians-Universität (LMU) München have now analyzed a molecule, which has an extremely short bond length.

As reported by the researchers in Nature Chemistry, the carbon atom and the chlorine atom in the so-called chlorotrinitromethane molecule are only 1.69 Angstroms apart from one another. "Non-covalent interactions are one of the factors responsible for this short distance", declared Göbel, whose doctoral thesis revealed the new results. "A better understanding of these interactions is important and useful in all areas, where molecular recognition and self-assembly come into play."

Chemical bond models that have been successfully used for well over a century assume that a good description of the properties of a compound can be obtained while ignoring all but the nearest-neighbour bonding interactions. The idea that electrostatic interactions between second, third and even further neighbors are important and should not be ignored has not been a common notion so far. The team of Professor Thomas M. Klapötke of the Department of Chemistry and Biochemistry at LMU Munich, primarily concerned with the synthesis and investigation of new high-energy materials, has now demonstrated for the first time that even second and third neighbors can have a decisive effect on the properties of a chemical bond.

For their investigation, the researchers chose the so-called chlorotrinitromethane molecule, a compound, consisting of the halogen chlorine and the pseudohalogen trinitromethyl group. The latter is composed of one carbon atom and three nitro groups. The trinitromethyl unit belongs to the group of pseudohalogens, which has properties similar to those of the halogens. Both groups are composed of non-metals, which are generally present in the gaseous or liquid state and form salts with metals. Contrary to the halogens, however, the pseudohalogens, instead of being true chemical elements, are chemical groups composed of different elements.

Using X-ray structural analysis, the researchers succeeded for the first time in revealing the internal structure of the chlorotrinitromethane molecule and drawing conclusions concerning the distances between the individual atoms. In their analyses, the chemists came up against a particularly interesting property of the chlorotrinitromethane molecule, namely the distance between its chlorine atom and its carbon atom is only 1.69 Angstroms. An Angstrom is 10-7 millimeters. The distance, now detected between the atoms, is the shortest distance ever observed for comparable chlorine-carbon single bonds. All previously measured distances fall within the range of approximately 1.71 and 1.91 Angstroms.

By means of theoretical calculations, carried out in cooperation with Professor Peter Politzer and Dr. Jane S. Murray of the University of New Orleans in the USA, the researchers were able to reproduce the distribution of electrical charges within the molecule. It turned out that the chlorine atom has a completely positive electrostatic potential, a rare case, since chlorine usually has a negative electrostatic potential in other molecules. Together with the charge distributions of the remaining atoms, this finding explains why the chlorine and carbon atoms are linked so tightly to one another. The results impressively show that electrostatic interactions between atoms within a molecule can have a significant effect on bond lengths, even if these atoms are not linked directly to one of the two atoms that form the bond.

In the case of chlorotrinitromethane, this effect is particularly pronounced and leads to an unusually short chlorine-carbon bond. However, it could be of importance in various other cases, especially in areas, where molecules recognize one another and assemble to larger structures. These mechanisms play an important role, for example, in biological systems and in nanotechnology.


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universitaet Muenchen (LMU). Note: Materials may be edited for content and length.


Journal Reference:

  1. Göbel et al. Chlorotrinitromethane and its exceptionally short carbon-chlorine bond. Nature Chemistry, 2009; DOI: 10.1038/nchem.179

Cite This Page:

Ludwig-Maximilians-Universitaet Muenchen (LMU). "When Atoms Are Getting Close: Shortest Carbon-chlorine Single Bond Detected." ScienceDaily. ScienceDaily, 5 May 2009. <www.sciencedaily.com/releases/2009/05/090504121956.htm>.
Ludwig-Maximilians-Universitaet Muenchen (LMU). (2009, May 5). When Atoms Are Getting Close: Shortest Carbon-chlorine Single Bond Detected. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2009/05/090504121956.htm
Ludwig-Maximilians-Universitaet Muenchen (LMU). "When Atoms Are Getting Close: Shortest Carbon-chlorine Single Bond Detected." ScienceDaily. www.sciencedaily.com/releases/2009/05/090504121956.htm (accessed September 20, 2014).

Share This



More Matter & Energy News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) — Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) — Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) — The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins