Featured Research

from universities, journals, and other organizations

Warming Climate Is Affecting Cascades Snowpack In Pacific Northwest

Date:
May 15, 2009
Source:
University of Washington
Summary:
There has been recent disagreement about the snowpack decline in the Cascade Mountains of the Pacific Northwest, but new research leaves little doubt that a warmer climate has a significant effect on the snowpack, even if other factors keep year-to-year measurements close to normal for a period of years.

There has been sharp disagreement in recent years about how much, or even whether, winter snowpack has declined in the Cascade Mountains of Washington and Oregon during the last half-century.

But new research leaves little doubt that a warmer climate has a significant effect on the snowpack, as measured by water content on April 1, even if other factors keep year-to-year measurements close to normal for a period of years.

Water content can vary greatly depending on temperature and other conditions at the time of snowfall. Typically an inch of snow at temperatures near freezing will contain significantly more water than an inch of snow a colder temperatures.

"All things being equal, if you make it 1 degree Celsius warmer, then 20 percent of the snowpack goes away for the central Puget Sound basin, the area we looked at," said Joseph Casola, a University of Washington doctoral student in atmospheric sciences.

That means that even in years with normal or above-normal snowfall, the snowfall probably would have been even greater except for climate warming. The finding has implications for various water-dependent resources, including drinking water supplies, fisheries, irrigation and hydropower, and it could be applicable to other areas of the Cascades in the Pacific Northwest.

Annual snowfall variability makes it difficult to plot a meaningful trend, Casola said. Starting in a year with high snow accumulation will imply a significant decrease over time, while starting in a year with average or low snow totals will imply little change or even an increase. So, for example, measuring from 1944 to 2005 shows just a slight decline in snowpack but changing the starting year to 1950 more than triples the decline.

However, the measurements also show a slight increase in the last 30 years, a period of significant climate warming. That is probably because trend measurements include declines from climate warming as well as increases and decreases from other factors. For example, several of the lowest-snow winters in the Puget Sound area were during El Niño years, while many of the highest-snow winters were during La Niña years. Those two climate phenomena in the South Pacific can have significant impact on Northwest weather. Likewise, the amount of snow can be affected by a long-term climate cycle in the North Pacific called the Pacific Decadal Oscillation, which changes between positive and negative phases on the order of every 20 years.

"Global warming can be reducing your snowpack over time, but other factors can mask the impact of the warming," Casola said. "Conversely, in a period of dry years global warming would tend to exacerbate the effects."

The new research used four different methods to examine decades-long records of water contained in Cascades snowpack in the central Puget Sound basin on April 1 of each year. Scientists used simple geometry to estimate temperature sensitivity of snowpack, made detailed analysis of seasonal snowpack and temperature data, used a hydrological model to examine the data, and analyzed daily temperature and precipitation measurements to estimate water content of snowpack on April 1.

"If you assume precipitation is the same every year and look at the effects of temperature alone, all the ways we examined the data converge at about a 20 percent decline in snowpack for each degree Celsius of temperature increase," said Casola.

He is lead author of a paper detailing the work, part of his doctoral thesis, which is being published online May 14 in Journal of Climate, published by the American Meteorological Society. Co-authors, all from the UW, are Lan Cuo, Ben Livneh, Dennis Lettenmaier, Mark Stoelinga, Philip Mote and John M. Wallace.

While there still is uncertainty in the trend data, people can expect to see lower spring snowpack more frequently in the future, with low-snow winters bringing low-flow summers, Casola said. Winter precipitation in the Cascades is likely to be similar to what is recorded now, but more of it will be rain.

Casola notes that businesses, resource manager, utilities and irrigators increasingly accept the notion of climate change, and many try to incorporate the information into long-term plans.

"Now they want to know, 'What does this mean for my operation?'" he said. "People are becoming more savvy to the issue of climate change. They want to be aware of changes that might be coming and to identify areas in their systems that perhaps need to be modified."

The work was funded by the National Science Foundation and the Joint Institute for the Study of the Atmosphere and Ocean at the UW.


Story Source:

The above story is based on materials provided by University of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University of Washington. "Warming Climate Is Affecting Cascades Snowpack In Pacific Northwest." ScienceDaily. ScienceDaily, 15 May 2009. <www.sciencedaily.com/releases/2009/05/090512153335.htm>.
University of Washington. (2009, May 15). Warming Climate Is Affecting Cascades Snowpack In Pacific Northwest. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2009/05/090512153335.htm
University of Washington. "Warming Climate Is Affecting Cascades Snowpack In Pacific Northwest." ScienceDaily. www.sciencedaily.com/releases/2009/05/090512153335.htm (accessed July 30, 2014).

Share This




More Earth & Climate News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) — Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) — A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Climate Change Could Cost Billions According To White House

Climate Change Could Cost Billions According To White House

Newsy (July 29, 2014) — A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) — The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins