Featured Research

from universities, journals, and other organizations

Fire And Water Reveal New Archaeological Dating Method

Date:
May 25, 2009
Source:
University of Manchester
Summary:
Scientists have developed a new way of dating archaeological objects -- using fire and water to unlock their "internal clocks."

Ancient bricks.
Credit: Image courtesy of University of Manchester

Scientists at The University of Manchester have developed a new way of dating archaeological objects – using fire and water to unlock their 'internal clocks'.

Related Articles


The simple method promises to be as significant a technique for dating ceramic materials as radiocarbon dating has become for organic materials such as bone or wood.

A team from The University of Manchester and The University of Edinburgh has discovered a new technique which they call 'rehydroxylation dating' that can be used on fired clay ceramics like bricks, tile and pottery.

Working with The Museum of London, the team has been able to date brick samples from Roman, medieval and modern periods with remarkable accuracy.

They have established that their technique can be used to determine the age of objects up to 2,000 years old – but believe it has the potential to be used to date objects around 10,000 years old.

The method relies on the fact that fired clay ceramic material will start to chemically react with atmospheric moisture as soon as it is removed from the kiln after firing. This continues over its lifetime causing it to increase in weight – the older the material, the greater the weight gain.

In 2003 the Manchester and Edinburgh team discovered a new law that precisely defines how the rate of reaction between ceramic and water varies over time.

The application of this law underpins the new dating method because the amount of water that is chemically combined with a ceramic provides an 'internal clock' that can be accessed to determine its age.

The technique involves measuring the mass of a sample of ceramic and then heating it to around 500 degrees Celsius in a furnace, which removes the water.

The sample is then monitored in a super-accurate measuring device known as a microbalance, to determine the precise rate at which the ceramic will combine with water over time.

Using the time law, it is possible to extrapolate the information collected to calculate the time it will take to regain the mass lost on heating – revealing the sample's age.

Lead author Dr Moira Wilson, Senior Lecturer in the School of Mechanical, Aerospace and Civil Engineering (MACE), said: "These findings come after many years of hard work. We are extremely excited by the potential of this new technique, which could become an established way of determining the age of ceramic artefacts of archaeological interest.

"The method could also be turned on its head and used to establish the mean temperature of a material over its lifetime, if a precise date of firing were known. This could potentially be useful in climate change studies.

"As well as the new dating method, there are also more wide-ranging applications of the work, such as the detection of forged ceramic."

The three-year 100,000 project was funded by the Leverhulme Trust, with the microbalance - which measures mass to 1/10th of a millionth of a gram – funded by a 66,000 grant from the Engineering and Physical Science Research Council (EPSRC).

Researchers are now planning to look at whether the new dating technique can be applied to earthenware, bone china and porcelain.

The full research team comprised Dr Moira Wilson, Dr Margaret Carter, Prof William Hoff, Ceren Ince, Shaun Savage and Bernard McKay from The University of Manchester, Professor Chris Hall from the School of Engineering and Centre for Materials Science and Engineering at The University of Edinburgh and Ian Betts from The Museum of London.

The Canterbury Archaeological Trust provided additional samples and information for the study while Ibstock Brick Ltd provided kiln-fresh bricks.


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dating fired-clay ceramics using long-term power-law rehydroxylation kinetics. Proceedings of the Royal Society A, May 20, 2009

Cite This Page:

University of Manchester. "Fire And Water Reveal New Archaeological Dating Method." ScienceDaily. ScienceDaily, 25 May 2009. <www.sciencedaily.com/releases/2009/05/090519214945.htm>.
University of Manchester. (2009, May 25). Fire And Water Reveal New Archaeological Dating Method. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/05/090519214945.htm
University of Manchester. "Fire And Water Reveal New Archaeological Dating Method." ScienceDaily. www.sciencedaily.com/releases/2009/05/090519214945.htm (accessed October 25, 2014).

Share This



More Fossils & Ruins News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Fossil Treasures at Risk in Morocco Desert Town

Fossil Treasures at Risk in Morocco Desert Town

AFP (Oct. 23, 2014) Hundreds of archeological jewels in and around the town of 30,000 people prompt geologists and archeologists to call the Erfoud area "the largest open air fossil museum in the world". Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Newsy (Oct. 23, 2014) A 45,000-year-old thighbone is showing when humans and neanderthals may have first interbred and revealing details about our origins. Video provided by Newsy
Powered by NewsLook.com
Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Newsy (Oct. 23, 2014) You've probably seen some weird-looking dinosaurs, but have you ever seen one this weird? It's worth a look. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins