Featured Research

from universities, journals, and other organizations

Capturing The Birth Of A Synapse: Mechanism Locking Two Neurons Found

Date:
May 28, 2009
Source:
University of Oregon
Summary:
Researchers have identified the locking mechanism that allows some neurons to form synapses to pass along essential information. Mutations of genes that produce a critical cell-adhesion molecule involved in the work were previously linked to autism.

Receptors are needed for synapses to become functional. Neuroligin (red) on the surface of the cell is tethered to neurotransmitter receptors (mauve) that reside in intracellular vesicles. This enables both synaptic components to move together to a site of synapse formation.
Credit: Courtesy of Philip Washbourne

Researchers have identified the locking mechanism that allows some neurons to form synapses to pass along essential information. Mutations of genes that produce a critical cell-adhesion molecule involved in the work were previously linked to autism.

Related Articles


The discovery -- captured with fluorescent imaging of excitatory neurons harvested from rat pups shortly after birth and studied in culture as they continued to develop -- is described in a paper in the journal Neural Development.

"We've caught two neuronal cells in the act of forming a synapse," said principle investigator Philip Washbourne, professor of biology at the University of Oregon. He describes the cell-adhesion neuroligin proteins on the membranes of receptor neurons as "molecular Velcro."

The research team of six UO and University of California, Davis, scientists found one of many finger-like filopodia, or spines, that reach out from one neuron is nabbed by neuroligin molecules on the membrane of another neuron. In turn, neuroligins recruit at least two other key proteins (PSD-95 and NMDA receptors) to begin building a scaffold to hold the synapse components in place. The moment of locking is captured in a video (link below) that will appear with the paper's final version at the journal's Web site.

Two neuroligin family members (3 and 4) have been linked to autism in the last decade.

"Chemical synapses are the primary means for transmitting information from one neuron to the next," said Washbourne, who is a member of the UO's Institute of Neuroscience. "Synapses are initially formed during development of the nervous system, and formation of appropriate synapses is crucial for establishing neuronal circuits that underlie behavior and cognition. Minor irregularities can lead to developmental disorders such as autism and mental retardation, and they may contribute to psychological disorders."

The findings, he added, reflect a clearer understanding of how synapses form, providing a roadmap for research that someday may lead to new therapies or a cure for autism, a brain development disorder that affects a person's social and communication abilities. The disorder affects 1 in every 150 American children, according to the Autism Society of America.

The new window opened by Washbourne's team captures the essence of synapse development, which occurs over and over among the estimated 100 billion neurons that make some 100 trillion synapses in a single human being. That leaves a lot of room for errors in the DNA-driven instructions for synthesizing molecules responsible for synapse formation, Washbourne said.

"Basically," Washbourne said, "we have found mechanisms by which two very important molecules, NMDA and PSD-95, are brought to a newly forming synapse."

Co-authors with Washbourne were postdoctoral researches Stephanie L. Barrow and Eliana Clark at UC-Davis, A. Kimberley McAllister, a professor in the UC-Davis Center for Neuroscience, and John R.L. Constable, a postdoctoral researcher in Washbourne's UO lab. Constable is funded by a medical research fellowship provided by Oregon Health and Science University in Portland.

The National Institute of Neurological Disorders and Stroke (National Institutes of Health), the Florida-based non-profit Whitehall Foundation and New York-based Autism Speaks, the nation's largest autism science and advocacy organization, funded Washbourne's research. McAllister was funded by the Pew Charitable Trusts and National Eye Institute.


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephanie L Barrow, John R.L. Constable, Eliana Clark, Faten El-Sabeawy, A. Kimberley McAllister, Philip Washbourne. Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis. Neural Development, 2009; 4 (1): 17 DOI: 10.1186/1749-8104-4-17

Cite This Page:

University of Oregon. "Capturing The Birth Of A Synapse: Mechanism Locking Two Neurons Found." ScienceDaily. ScienceDaily, 28 May 2009. <www.sciencedaily.com/releases/2009/05/090527091753.htm>.
University of Oregon. (2009, May 28). Capturing The Birth Of A Synapse: Mechanism Locking Two Neurons Found. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/05/090527091753.htm
University of Oregon. "Capturing The Birth Of A Synapse: Mechanism Locking Two Neurons Found." ScienceDaily. www.sciencedaily.com/releases/2009/05/090527091753.htm (accessed October 25, 2014).

Share This



More Mind & Brain News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins