Featured Research

from universities, journals, and other organizations

Misreading Of Histone Code Linked To Human Cancer

Date:
June 11, 2009
Source:
Rockefeller University
Summary:
The development of blood from stem cell to fully formed blood cell follows a genetically determined program. When it works properly, blood formation stops when it reaches maturity. But when it doesn't, genetic mutations can prevent the stop signal and cause the developing cells to turn cancerous. Now scientists show for the first time that a misreading of the blood cells' histone code is responsible for acute myeloid leukemia, a rare form of the deadly blood cancer.

The development of blood from stem cell to fully formed blood cell follows a genetically determined program. When it works properly, blood formation stops when it reaches maturity. But when it doesn’t, genetic mutations can prevent the stop signal and cause the developing cells to turn cancerous. In research published in Nature, Rockefeller University scientists show for the first time that a misreading of the blood cells’ histone code is responsible for acute myeloid leukemia, a rare form of the deadly blood cancer.

“We’ve shown that deregulation of a PHD finger, which normally acts as a reader of histone modifications, is linked to cancer in humans,” says C. David Allis, senior author and head of Rockefeller’s Laboratory of Chromatin Biology and Epigenetics. “We believe that further research will show the involvement of PHD fingers in other diseases.”

Research by Allis and other scientists on specialized DNA-packaging proteins called histones has revealed that patterns of chemical modifications on histones alter the balance of on and off states in chromosomes, and cause genes to be switched on or off. The work has led Allis and colleagues to propose a “histone code” for gene regulation. One specific chemical change, methylation of the amino acid lysine 4 (K4) on the tail of histone H3, has been shown to activate genes.

The process of producing blood cells is regulated by the Hox-A gene cluster. When operating normally, Hox genes expand the pool of blood stem cells until the developmental program shuts them down. In leukemia, two different chromosomes break apart and fuse together. This translocation produces an altered protein that prevents the progenitor or blood stem cells from differentiating into specialized, mature cells. Instead, they continue to divide and proliferate. Exactly how many of these fusion proteins work has remained a mystery.

To answer this question, Gang (Greg) Wang, a postdoctoral researcher in Allis’s lab and a fellow of the Leukemia and Lymphoma Society, focused on the fusion protein NUP98-PHD. Comprised of bits of a nuclear pore protein (NUP98) and a PHD finger motif, NUP98-PHD has been shown clinically to be involved in the development of acute myeloid leukemia in humans. PHD fingers “read” the methylation state of histone lysines, and previous research from Allis’s lab showed that some PHD finger-containing factors regulate expression of genes in the Hox cluster.

Wang cloned NUP98-PHD from human leukemia cells and inserted the fusion protein into blood-forming progenitor cells derived from the bone marrow of mice. The cultured mouse bone marrow cells divided indefinitely, as would be expected in leukemia. The researchers then transplanted these cells into normal mice and found that the mice developed acute myeloid leukemia. A control group of mice, transplanted with cells cultured with a similar protein that lacked the PHD finger, did not get sick.

The Rockefeller researchers collaborated with a structural biology group led by Dinshaw Patel at Memorial Sloan-Kettering Cancer Center to identify specifically how the PHD finger recognizes the methylated lysine 4 of histone H3.

According to Wang and Allis, the fusion protein interferes with the Hox genes’ ability to regulate blood formation.

“The fusion protein perturbs the histone modification state and blocks the appropriate silencing of the HoxA9 gene cluster, preventing differentiation and maintaining the stem cell properties of the bone marrow progenitor cells,” says Wang.

There are more than 200 PHD fingers in human cells, and now that a link between a PHD finger and histone modifications has been established, Allis thinks this could lead researchers to identify misregulation of PHD fingers in other diseases. With respect to acute myeloid leukemia, this finding could lead to new ways to treat the blood disorder.

“Greg’s finding may open up therapeutic strategies where you could reverse the PHD finger’s effect by targeting the reader with a drug,” says Allis.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wang et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature, Online May 10, 2009; DOI: 10.1038/nature08036

Cite This Page:

Rockefeller University. "Misreading Of Histone Code Linked To Human Cancer." ScienceDaily. ScienceDaily, 11 June 2009. <www.sciencedaily.com/releases/2009/06/090606110445.htm>.
Rockefeller University. (2009, June 11). Misreading Of Histone Code Linked To Human Cancer. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2009/06/090606110445.htm
Rockefeller University. "Misreading Of Histone Code Linked To Human Cancer." ScienceDaily. www.sciencedaily.com/releases/2009/06/090606110445.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins