Featured Research

from universities, journals, and other organizations

Natural Computing And Synthetic Biology Techniques Advanced For Treating Diseases

Date:
June 19, 2009
Source:
Facultad de Informática de la Universidad Politécnica de Madrid
Summary:
Researchers have designed a biomolecular automaton and several genetic circuits with potential future applications in the field of vanguard medicine. Depending on how it is programmed, the molecular automaton detects DNA or RNA signals in vitro. In the future, though, provided it passes all the experimental tests, it will be able to operate inside the human body.

Researchers from the Artificial Intelligence Group (LIA) at the Universidad Politécnica de Madrid's School of Computing have designed a biomolecular automaton and several genetic circuits with potential future applications in the field of vanguard medicine.

Depending on how it is programmed, the molecular automaton detects DNA or RNA signals in vitro. In the future, though, provided it passes all the experimental tests, it will be able to operate inside the human organism.

The ultimate aim of a molecular automaton is to detect and treat diseases in situ inside a human organism. Fitted inside the organism, the automaton detects anomalies and dispenses the right medicine at the right time. Biomolecular automata are artificial devices built with biomolecules and designed to operate inside a living organism.

These automata are engineered by first drafting a pencil-and-paper design or specification. Then a mathematical model is built describing the equations governing its operation. This is followed by a computer simulation. Finally, the automaton is implemented in a biotechnology laboratory. The whole process will be repeated cyclically until the automaton has the desired features and functionality.

The design and application of programmable molecular automata to the diagnosis and in vivo treatment of diseases (also known as intelligent drug) is a recent and promising application of DNA computing to biomedicine, which was initiated by Prof. Yaakov Benenson in 2004.

The new biomolecular automaton designed and modelled at the UPM's School of Computing has been sent to the Technische Universität München's nanobiotechology laboratory for implementation and, if it works, will be applied to medical research.

Genetic oscillators

The LIA has also designed several circuits or synthetic biological oscillators, whose job is to synchronize the activity of biomolecular automata in a living system.

One of the synthetic biomolecular circuit designs developed by this group is to be presented at the 3rd International Workshop on Practical Applications of Computational Biology & Bioinformatics (IWPACBB'09) to be held in Salamanca (Spain) this week.

The synthetic genetic circuit to be presented at Salamanca outputs a biological signal. The signal concentration alternates at regular time intervals and can be used as a clock signal for synchronizing biological processes. The clock signal frequency of this oscillating circuit can be modified (faster or slower clock), and it will act on a biological circuit in the same way as the clock signal in digital computers.

This design will also be implemented at the Technische Universität München and, if it works properly, will be donated to the Registry of Standard Biological Parts, the open source genetic circuits design database maintained by the Biobricks Foundation, associated with MIT.

This circuit or genetic oscillator is to be used as a module for synchronizing the activity of other modules of a more complex genetic circuit or as a synchronization signal controlling the activity and the operating rate of a set of biomolecular automata. These oscillating circuits are like traffic lights deployed inside a cell or a bacteria that control and regulate the operation of the other circuits or biomolecular automata.

Cutting-Edge Research

The aim of this project, which kicked off in 2006 and is to wind up at the end of 2009, is to advance natural computing and systems biology using a cell-inspired distributed computing model (called P system or membrane computing), as well as to develop synthetic biology by designing new circuits and biomolecular automata.

As a branch of science, natural computing has two goals: understand the computational processes taking place in nature (particularly, biology) and develop computational models inspired by nature. Systems biology pursues the challenge of developing robust and precise mathematical models whose application can describe, understand and make predictions on complex biological systems and processes. The budding discipline of synthetic biology aims to design and build new devices and artificial biological organisms, as well as redesign and reprogram natural biological systems.

This project, led by School of Computer professor Alfonso Rodríguez-Patón and researched by doctoral candidate Jesús Miró Bueno, has been funded by the Spanish Ministry of Education and Science (Project TIN2006-15595).


Story Source:

The above story is based on materials provided by Facultad de Informática de la Universidad Politécnica de Madrid. Note: Materials may be edited for content and length.


Cite This Page:

Facultad de Informática de la Universidad Politécnica de Madrid. "Natural Computing And Synthetic Biology Techniques Advanced For Treating Diseases." ScienceDaily. ScienceDaily, 19 June 2009. <www.sciencedaily.com/releases/2009/06/090610161002.htm>.
Facultad de Informática de la Universidad Politécnica de Madrid. (2009, June 19). Natural Computing And Synthetic Biology Techniques Advanced For Treating Diseases. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/06/090610161002.htm
Facultad de Informática de la Universidad Politécnica de Madrid. "Natural Computing And Synthetic Biology Techniques Advanced For Treating Diseases." ScienceDaily. www.sciencedaily.com/releases/2009/06/090610161002.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) — An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) — The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) — The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) — Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins