Science News
from research organizations

Nanocrystals Reveal Activity Within Cells

Date:
June 18, 2009
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Researchers have created bright, stable and bio-friendly nanocrystals that act as individual investigators of activity within a cell. These ideal light emitting probes represent a significant step in scrutinizing the behaviors of proteins and other components in complex systems such as a living cell.
Share:
       
FULL STORY

Molecular Foundry post-doctoral researcher Shiwei Wu, staff scientist Jim Schuck, Facility Director Delia Milliron, staff scientist Bruce Cohen and post-doctoral researcher Gang Han demonstrate bright, stable and bio-friendly nanocrystal probes that act as individual investigators of their local environment.
Credit: Image courtesy of DOE/Lawrence Berkeley National Laboratory

Researchers at the U.S. Department of Energy’s (DOE) Lawrence Berkeley National Laboratory have created bright, stable and bio-friendly nanocrystals that act as individual investigators of activity within a cell. These ideal light emitting probes represent a significant step in scrutinizing the behaviors of proteins and other components in complex systems such as a living cell.

Labeling a given cellular component and tracking it through a typical biological environment is fraught with issues: the probe can randomly turn on and off, competes with light emitting from the cell, and often requires such intense laser excitation, it eventually destroys the probe, muddling anything you’d be interested in seeing.

“The nanoparticles we’ve designed can be used to study biomolecules one at a time,” said Bruce Cohen, a staff scientist in the Biological Nanostructures Facility at Berkeley Lab’s nanoscience research center, the Molecular Foundry. “These single-molecule probes will allow us to track proteins in a cell or around its surface, and to look for changes in activity when we add drugs or other bioactive compounds.”

Molecular Foundry post-doctoral researchers Shiwei Wu and Gang Han, led by Cohen, Imaging and Manipulation of Nanostructures staff scientist Jim Schuck and Inorganic Nanostructures Facility Director Delia Milliron, worked to develop nanocrystals containing rare earth elements that absorb low-energy infrared light and transform it into visible light through a series of energy transfers when they are struck by a continuous wave, near-infrared laser. Biological tissues are more transparent to near-infrared light, making these nanocrystals well suited for imaging living systems with minimal damage or light scatter.

“Rare earths have been known to show phosphorescent behavior, like how the old-style television screen glows green after you shut it off. These nanocrystals draw on this property, and are a million times more efficient than traditional dyes,” said Schuck. “No probe with ideal single-molecule imaging properties had been identified to date—our results show a single nanocrystal is stable and bright enough that you can go out to lunch, come back, and the intensity remains constant.”

To study how these probes might behave in a real biological system, the Molecular Foundry team incubated the nanocrystals with embryonic mouse fibroblasts, cells crucial to the development of connective tissue, allowing the nanocrystals to be taken up into the interior of the cell. Live-cell imaging using the same near-infrared laser showed similarly strong luminescence from the nanocrystals within the mouse cell, without any measurable background signal.

“While these types of particles have existed in one form or another for some time, our discovery of the unprecedented ’single-molecule’ properties these individual nanocrystals possess opens a wide range of applications that were previously inaccessible,” Schuck adds.

“Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” by Shiwei Wu, Gang Han, Delia J. Milliron, Shaul Aloni, Virginia Altoe, Dmitri Talapin, Bruce E. Cohen and P. James Schuck, appears in Proceedings of the National Academy of Sciences and is available in Proceedings of the National Academy of Sciences online.

Work at the Molecular Foundry was supported by the Office of Basic Energy Sciences within the DOE Office of Science.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Nanocrystals Reveal Activity Within Cells." ScienceDaily. ScienceDaily, 18 June 2009. <www.sciencedaily.com/releases/2009/06/090616164000.htm>.
DOE/Lawrence Berkeley National Laboratory. (2009, June 18). Nanocrystals Reveal Activity Within Cells. ScienceDaily. Retrieved May 30, 2015 from www.sciencedaily.com/releases/2009/06/090616164000.htm
DOE/Lawrence Berkeley National Laboratory. "Nanocrystals Reveal Activity Within Cells." ScienceDaily. www.sciencedaily.com/releases/2009/06/090616164000.htm (accessed May 30, 2015).

Share This Page: