Featured Research

from universities, journals, and other organizations

Computer Scientists Develop Model For Studying Arrangements Of Tissue Networks By Cell Division

Date:
July 3, 2009
Source:
Harvard University
Summary:
Computer scientists have developed a framework for studying the arrangement of tissue networks created by cell division across a diverse set of organisms, including fruit flies, tadpoles and plants.

Using a computational model, Nagpal and her collaborators demonstrated that the regularity of epithelial tissues, e.g. the percentage of hexagons, can act as an indicator for inferring properties about how cells divide.
Credit: Radhika Nagpal, Harvard School of Engineering and Applied Sciences

Computer scientists at Harvard have developed a framework for studying the arrangement of tissue networks created by cell division across a diverse set of organisms, including fruit flies, tadpoles, and plants.

The finding, published in the June 2009 issue of PLoS Computational Biology, could lead to insights about how multicellular systems achieve (or fail to achieve) robustness from the seemingly random behavior of groups of cells and provide a roadmap for researchers seeking to artificially emulate complex biological behavior.

"We developed a model that allows us to study the topologies of tissues, or how cells connect to each other, and understand how that connectivity network is created through generations of cell division," says senior author Radhika Nagpal, Assistant Professor of Computer Science at the Harvard School of Engineering and Applied Sciences (SEAS) and a core faculty member of the Wyss Institute for Biologically Inspired Engineering. "Given a cell division strategy, even if cells divide at random, very predictable 'signature' features emerge at the tissue level."

Using their computational model, Nagpal and her collaborators demonstrated that the regularity of the tissue, such as the percentage of hexagons and the overall cell shape distribution, can act as an indicator for inferring properties about the cell division mechanism itself. In the epithelial tissues of growing organisms, from fruit flies to humans, the ability to cope with often unpredictable variations (referred to as robustness) is critical for normal development. Rapid growth, entailing large amounts of cell division, must be balanced with the proper regulation of overall tissue and organ architecture.

"Even with modern imaging methods, we can rarely directly 'ask' the cell how it decided upon which way to divide. The computational tool allows us to generate and eliminate hypotheses about cell division. Looking at the final assembled tissue gives us a clue about what assembly process was used," explains Nagpal.

The model also sheds light on a prior discovery made by the team: that many proliferating epithelia, from plants to frogs, show a nearly identical cell shape distribution. While the reasons are not clear, the authors suggest that the high regularity observed in nature requires a strong correlation between how neighboring cells divide. While plants and fruit flies, for example, seem to have conserved cell shape distributions, the two organisms have, based on the computational and experimental evidence, evolved distinct ways of achieving such a pattern.

"Ultimately, the work offers a beautiful example of the way biological development can take advantage of very local and often random processes to create large-scale robust systems. Cells react to local context but still create organisms with incredible global predictability," says Nagpal.

In the future, the team plans to use their approach to detect and study various mutations that adversely affect cell division process in epithelial tissues. Epithelial tissues are common throughout animals and form important structures in humans from skin to the inner lining of organs. Deviations from normal division can result in abnormal growth during early development and to the formation of cancers in adults.

"One day we may even be able to use our model to help researchers understand other kinds of natural cellular networks, from tissues to geological crack formations, and, by taking inspiration from biology, design more robust computer networks," adds Nagpal.

Nagpal's collaborators included Ankit B. Patel and William T. Gibson, both at Harvard, and Dr. Matthew C. Gibson at Stower's Institute.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Cite This Page:

Harvard University. "Computer Scientists Develop Model For Studying Arrangements Of Tissue Networks By Cell Division." ScienceDaily. ScienceDaily, 3 July 2009. <www.sciencedaily.com/releases/2009/06/090617105048.htm>.
Harvard University. (2009, July 3). Computer Scientists Develop Model For Studying Arrangements Of Tissue Networks By Cell Division. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2009/06/090617105048.htm
Harvard University. "Computer Scientists Develop Model For Studying Arrangements Of Tissue Networks By Cell Division." ScienceDaily. www.sciencedaily.com/releases/2009/06/090617105048.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins