Featured Research

from universities, journals, and other organizations

Nonstick And Laser-safe Gold Aids Laser Trapping Of Biomolecules

Date:
July 1, 2009
Source:
National Institute of Standards and Technology (NIST)
Summary:
Biophysicists have made gold more precious than ever -- at least as a research tool -- by creating nonstick gold surfaces and laser-safe gold nanoposts to aid in trapping and fixing individual biomolecules for study.

The gold posts in this colorized micrograph, averaging 450 nanometers in diameter, are used to anchor individual biomolecules such as DNA for studies of their mechanical properties. The background surface is glass coated with a protein to prevent unwanted sticking.
Credit: D.H. Paik/JILA

Biophysicists long for an ideal material—something more structured and less sticky than a standard glass surface—to anchor and position individual biomolecules. Gold is an alluring possibility, with its simple chemistry and the ease with which it can be patterned. Unfortunately, gold also tends to be sticky and can be melted by lasers. Now, biophysicists at JILA have made gold more precious than ever—at least as a research tool—by creating nonstick gold surfaces and laser-safe gold nanoposts, a potential boon to laser trapping of biomolecules.

JILA’s successful use of gold in optical-trapping experiments, reported in Nano Letters, could lead to a 10-fold increase in numbers of single molecules studied in certain assays, from roughly five to 50 per day, according to group leader Tom Perkins of NIST. The ability to carry out more experiments with greater precision will lead to new insights, such as uncovering diversity in seemingly identical molecules, and enhance NIST’s ability to carry out mission work, such as reproducing and verifying piconewton-scale force measurements using DNA, Perkins says. (A one-kilogram mass on the Earth’s surface exerts a force of roughly 10 newtons. A piconewton is 0.000 000 000 001 newtons.)

Perkins and other biophysicists use laser beams to precisely manipulate, track and measure molecules like DNA, which typically have one end bonded to a surface and the other end attached to a micron-sized bead that acts as a “handle” for the laser. Until now, creating the platform for such experiments has generally involved nonspecifically absorbing fragile molecules onto a sticky glass surface, producing random spacing and sometimes destroying biological activity. “It’s like dropping a car onto a road from 100 feet up and hoping it will land tires down. If the molecule lands in the wrong orientation, it won’t be active or, worse, it will only partially work,” Perkins says.

Ideally, scientists want to attach biomolecules in an optimal pattern on an otherwise nonstick surface. Gold posts are easy to lay down in desired patterns at the nanometer scale. Perkins’ group attached the DNA to the gold with sulfur-based chemical units called thiols (widely used in nanotechnology), an approach that is mechanically stronger than the protein-based bonding techniques typically used in biology.

The JILA scientists used six thiol bonds instead of just one between the DNA and the gold posts. These bonds were mechanically strong enough to withstand high-force laser trapping and chemically robust enough to allow the JILA team to coat the unreacted gold on each nanopost with a polymer cushion, which eliminated undesired sticking. “Now you can anchor DNA to gold and keep the rest of the gold very nonstick,” Perkins says.

Moreover, the gold nanoposts were small enough—with diameters of 100 to 500 nanometers and a height of 20 nanometers—that the scientists could avoid hitting the posts directly with lasers. “Like oil and water, traditionally laser tweezers and gold don’t mix. By making very small islands of gold, we positioned individual molecules where we wanted them, and with a mechanical strength that enables more precise and additional types of studies,” Perkins says.

JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.

The research was supported by a W.M. Keck Grant in the RNA Sciences, the National Science Foundation, and NIST.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Paik et al. Integrating a High-Force Optical Trap with Gold Nanoposts and a Robust Gold−DNA Bond. Nano Letters, 2009; 090609114259053 DOI: 10.1021/nl901404s

Cite This Page:

National Institute of Standards and Technology (NIST). "Nonstick And Laser-safe Gold Aids Laser Trapping Of Biomolecules." ScienceDaily. ScienceDaily, 1 July 2009. <www.sciencedaily.com/releases/2009/06/090617105050.htm>.
National Institute of Standards and Technology (NIST). (2009, July 1). Nonstick And Laser-safe Gold Aids Laser Trapping Of Biomolecules. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/06/090617105050.htm
National Institute of Standards and Technology (NIST). "Nonstick And Laser-safe Gold Aids Laser Trapping Of Biomolecules." ScienceDaily. www.sciencedaily.com/releases/2009/06/090617105050.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins