Featured Research

from universities, journals, and other organizations

How Strain At Grain Boundaries Suppresses High-temperature Superconductivity

Date:
July 8, 2009
Source:
National Institute of Standards and Technology
Summary:
Researchers have discovered that a reduction in mechanical strain at the boundaries of crystal grains can significantly improve the performance of high-temperature superconductors.

Electron microscope image of two superconducting thin films that meet at a six degree tilt boundary (the dark line running through the image). The numerous smaller lines that intersect the grain boundary at 90 degrees are the individual crystalline layers. The connection between the two films shows distortions in the superconducting layers, which severely limits current flow in these materials.
Credit: F.J. Baca, US Air Force Research Lab

Researchers at the National Institute of Standards and Technology (NIST) have discovered that a reduction in mechanical strain at the boundaries of crystal grains can significantly improve the performance of high-temperature superconductors (HTS). Their results could lead to lower cost and significantly improved performance of superconductors in a wide variety of applications, such as power transmission, power grid reliability and advanced physics research.

One of the main challenges in developing long-length, high-quality HTS wires is to mitigate the effect of granularity on wire performance because grain boundaries are prone to block current flow. Dislocations—defects in the crystalline structure—that grow in number with increasing grain-boundary angle strongly reduce the superconducting crosssection of the grain boundary.

Switching to thin-film designs has led to great improvements in grain alignment and significantly improved performance in, for instance, yttrium-barium-copper-oxide (YBCO) coated conductors. But even in these highly aligned superconductor films grain boundaries still limit their performance. The effect of dislocations can further be mitigated by chemical doping of the grain boundaries—for instance by replacing some of the yttrium atoms with calcium—but it has been difficult to apply this technique to long wire lengths.

Although it is well known that dislocations cause part of the grain boundary crosssection to become non-superconducting, the effect of strain—which extends from the dislocations into the remaining superconducting bridges over the grain boundary—was previously unknown. NIST’s Danko van der Laan and his collaborators have found that this strain plays a key role in reducing current flow over grain boundaries in YBCO. Furthermore, when the strain was removed by applying compression to the grain boundaries, the superconducting properties improved dramatically.

The new understanding of the effects of strain on current flow in thin-film superconductors could significantly advance the development of these materials for practical applications and could lower their cost. Some of the most promising uses are in more efficient electrical transmission lines, which already have been successfully demonstrated by U.S. power companies, and increased electric power grid reliability. NIST has research programs in both these areas. Improved HTS thin-film conductors could also enable more powerful high-field particle accelerators and advanced cancer treatment facilities.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. D.C. van der Laan, T.J. Haugen and P.N. Barnes. Effect of compressive uni-axial strain on grain boundary critical current density in YBa2Cu3O7-d superconducting films. Physical Review Letters, June 9, 2009

Cite This Page:

National Institute of Standards and Technology. "How Strain At Grain Boundaries Suppresses High-temperature Superconductivity." ScienceDaily. ScienceDaily, 8 July 2009. <www.sciencedaily.com/releases/2009/06/090617123439.htm>.
National Institute of Standards and Technology. (2009, July 8). How Strain At Grain Boundaries Suppresses High-temperature Superconductivity. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/06/090617123439.htm
National Institute of Standards and Technology. "How Strain At Grain Boundaries Suppresses High-temperature Superconductivity." ScienceDaily. www.sciencedaily.com/releases/2009/06/090617123439.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins