Featured Research

from universities, journals, and other organizations

How Strain At Grain Boundaries Suppresses High-temperature Superconductivity

Date:
July 8, 2009
Source:
National Institute of Standards and Technology
Summary:
Researchers have discovered that a reduction in mechanical strain at the boundaries of crystal grains can significantly improve the performance of high-temperature superconductors.

Electron microscope image of two superconducting thin films that meet at a six degree tilt boundary (the dark line running through the image). The numerous smaller lines that intersect the grain boundary at 90 degrees are the individual crystalline layers. The connection between the two films shows distortions in the superconducting layers, which severely limits current flow in these materials.
Credit: F.J. Baca, US Air Force Research Lab

Researchers at the National Institute of Standards and Technology (NIST) have discovered that a reduction in mechanical strain at the boundaries of crystal grains can significantly improve the performance of high-temperature superconductors (HTS). Their results could lead to lower cost and significantly improved performance of superconductors in a wide variety of applications, such as power transmission, power grid reliability and advanced physics research.

Related Articles


One of the main challenges in developing long-length, high-quality HTS wires is to mitigate the effect of granularity on wire performance because grain boundaries are prone to block current flow. Dislocations—defects in the crystalline structure—that grow in number with increasing grain-boundary angle strongly reduce the superconducting crosssection of the grain boundary.

Switching to thin-film designs has led to great improvements in grain alignment and significantly improved performance in, for instance, yttrium-barium-copper-oxide (YBCO) coated conductors. But even in these highly aligned superconductor films grain boundaries still limit their performance. The effect of dislocations can further be mitigated by chemical doping of the grain boundaries—for instance by replacing some of the yttrium atoms with calcium—but it has been difficult to apply this technique to long wire lengths.

Although it is well known that dislocations cause part of the grain boundary crosssection to become non-superconducting, the effect of strain—which extends from the dislocations into the remaining superconducting bridges over the grain boundary—was previously unknown. NIST’s Danko van der Laan and his collaborators have found that this strain plays a key role in reducing current flow over grain boundaries in YBCO. Furthermore, when the strain was removed by applying compression to the grain boundaries, the superconducting properties improved dramatically.

The new understanding of the effects of strain on current flow in thin-film superconductors could significantly advance the development of these materials for practical applications and could lower their cost. Some of the most promising uses are in more efficient electrical transmission lines, which already have been successfully demonstrated by U.S. power companies, and increased electric power grid reliability. NIST has research programs in both these areas. Improved HTS thin-film conductors could also enable more powerful high-field particle accelerators and advanced cancer treatment facilities.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. D.C. van der Laan, T.J. Haugen and P.N. Barnes. Effect of compressive uni-axial strain on grain boundary critical current density in YBa2Cu3O7-d superconducting films. Physical Review Letters, June 9, 2009

Cite This Page:

National Institute of Standards and Technology. "How Strain At Grain Boundaries Suppresses High-temperature Superconductivity." ScienceDaily. ScienceDaily, 8 July 2009. <www.sciencedaily.com/releases/2009/06/090617123439.htm>.
National Institute of Standards and Technology. (2009, July 8). How Strain At Grain Boundaries Suppresses High-temperature Superconductivity. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2009/06/090617123439.htm
National Institute of Standards and Technology. "How Strain At Grain Boundaries Suppresses High-temperature Superconductivity." ScienceDaily. www.sciencedaily.com/releases/2009/06/090617123439.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins