Featured Research

from universities, journals, and other organizations

Visualizing Formation Of A New Synapse

Date:
June 25, 2009
Source:
University of California - Davis - Health System
Summary:
A protein called neuroligin that is implicated in some forms of autism is critical to the construction of a working synapse, locking neurons together like "molecular Velcro," a new study has found.

A protein called neuroligin that is implicated in some forms of autism is critical to the construction of a working synapse, locking neurons together like "molecular Velcro."
Credit: Image courtesy of University of California - Davis - Health System

A protein called neuroligin that is implicated in some forms of autism is critical to the construction of a working synapse, locking neurons together like "molecular Velcro," a study lead by a team of UC Davis researchers has found.

Published online in the June issue of the journal Neural Development, the study is accompanied by groundbreaking images that are the first toshowtwo neurons coming together using neuroligin to construct anew synapse.

"Previous research has suggested that neuroligin is critical for the formation and stabilization of synapses," saidKimberley McAllister, an associate professor of neurology in theUC Davis School of Medicineand a researcher at theUC Davis Center for Neuroscience. "Our work suggests that neuroligin is one of the first molecules to be recruited to new synapses and that it also acts as Velcro to strengthen those new connections."

Neuroligin is a member of a family of four protein molecules that bind to another family of proteins, the β-neurexins, across synapses. During the past decade, scientists have observed that neuroligin is critical for synapse formation and function, but it is only recently that a link between the two synapse-forming molecules and autism has been recognized, McAllister said.

Lead study author and UC Davis postdoctoral fellow Stephanie Barrow said that researchers had hypothesized that neuroligin could facilitate the recruitment of other proteins important in building synapses, but no one had been able to directly visualize the process. That's because synapses are less than 1 micron wide — 100 times narrower than a strand of human hair. To view the process, the researchers cultured neurons taken from newly born rats and flourescently labled the proteins — neuroligin, PSD-95 and NMDA — which are critical to synapse formation.

"We are the first to observe that neuroligin zips around dendrites (the branched projections of neurons) before synapses form and can accumulate very soon after contact between cells," Barrow said.

Barrow described what the team was able to visualize: "Axons of one neuron grow toward the dendrites of neighboring neurons. As they do so, finger-like structures called filopodia extend and retract rapidly from the tip of the axons and eventually make a stable contact with the dendrite. We can then see neuroligin accumulate at these new contact sites very rapidly, possibly stabilizing adhesion between the two cells. After a few minutes, more neuroligin accumulates at this contact site, bringing NMDA receptors in with it, which is then followed by a much slower recruitment of PSD-95."

The images that accompany the study show that, indeed, the two synaptic receptor proteins, PSD-95 and NMDA, are independently recruited to the site of synapse formation once the connections are locked in place by neuroligin.

"Synapses are basically specialized sites of cell adhesion that are initially formed during development of the nervous system. Formation of viable synapses is crucial for establishing neuronal circuits that underlie behavior and cognition," said study senior authorPhilip Washbourne, a UC Davis postdoctoral fellow when the study was initiated and now an assistant professor of biology at the University of Oregon.

McAllister and Barrow are continuing to capture images of the dynamics of other important molecules during synapse formation. Their goal is to create a virtual cinematic representation that includes many of the molecules that play important roles in the formation of a normal, working synapse.

"Many people think that improper synapse formation leads to the symptoms of autism," McAllister said. "This research will allow us to learn more about how synapses form to better understand what aspects of synapse formation might be altered in the disorder."

Other study authors include Faten El-Sabeawy of UC Davis, Eliana Clark, formerly of UC Davis, and University of Oregon postdoctoral fellow John Constable.

The study was funded by the Pew Charitable Trusts, the National Eye Institute, the John Merck Fund,a UC Davis Vision Science Training Grant, the Whitehall Foundation and Autism Speaks.


Story Source:

The above story is based on materials provided by University of California - Davis - Health System. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Davis - Health System. "Visualizing Formation Of A New Synapse." ScienceDaily. ScienceDaily, 25 June 2009. <www.sciencedaily.com/releases/2009/06/090617154407.htm>.
University of California - Davis - Health System. (2009, June 25). Visualizing Formation Of A New Synapse. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2009/06/090617154407.htm
University of California - Davis - Health System. "Visualizing Formation Of A New Synapse." ScienceDaily. www.sciencedaily.com/releases/2009/06/090617154407.htm (accessed October 2, 2014).

Share This



More Mind & Brain News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Stopping School Violence

Stopping School Violence

Ivanhoe (Oct. 1, 2014) A trauma doctor steps out of the hospital and into the classroom to teach kids how to calmly solve conflicts, avoiding a trip to the ER. Video provided by Ivanhoe
Powered by NewsLook.com
Pineal Cysts: Debilitating Pain

Pineal Cysts: Debilitating Pain

Ivanhoe (Oct. 1, 2014) A tiny cyst in the brain that can cause debilitating symptoms like chronic headaches and insomnia, and the doctor who performs the delicate surgery to remove them. Video provided by Ivanhoe
Powered by NewsLook.com
Burning Away Brain Tumors

Burning Away Brain Tumors

Ivanhoe (Oct. 1, 2014) Doctors are 'cooking' brain tumors. Hear how this new laser-heat procedure cuts down on recovery time. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins