Featured Research

from universities, journals, and other organizations

Streaming Sand Grains Help Define Essence Of A Liquid

Date:
June 25, 2009
Source:
National Science Foundation
Summary:
Researchers recently showed that dry granular materials such as sands, seeds and grains have properties similar to liquid, forming water-like droplets when poured from a given source. The finding could be important to a wide range of industries that use "fluidized" dry particles for oil refining, plastics manufacturing and pharmaceutical production.

In a first-time accomplishment, physicists from the Materials Research Science and Engineering Center at the University of Chicago used high-speed photography to measure minute levels of surface tension and detect droplet formation in flows of dry granular materials. The finding could be important to industries that use "fluidized" dry particles for oil refining, plastics manufacturing, pharmaceutical production and other mechanized processes.
Credit: Helge F. Gruetjen, John R. Royer, Scott R. Waitukaitis, and Heinrich M. Jaeger, The University of Chicago

University of Chicago researchers recently showed that dry granular materials such as sands, seeds and grains have properties similar to liquid, forming water-like droplets when poured from a given source. The finding could be important to a wide range of industries that use "fluidized" dry particles for oil refining, plastics manufacturing and pharmaceutical production.

Researchers previously thought dry particles lacked sufficient surface tension to form droplets like ordinary liquids. But, in a first-time accomplishment, physicists from the Materials Research Science and Engineering Center at the University of Chicago, led by Professor Heinrich M. Jaeger, used high-speed photography to measure minute levels of surface tension and detect droplet formation in flows of dry granular materials.

The science journal Nature reports the finding in its June 25 issue. The materials research center at the University of Chicago is supported by the National Science Foundation.

Until recently, studies of so-called "free falling granular streams" tracked shape changes in flows of dry materials, but were unable to observe the full evolution of the forming droplets or the clustering mechanisms involved.

"Previous studies of granular streams were able to detect clustering by performing experiments in vacuum and were able to establish that the clustering was not caused by the drag from the ambient air," said Jaeger. "However, the cause of the clustering remained a mystery."

But in this new experiment, researchers measured nanoscale forces that cause droplet formation using a special co-moving apparatus devised for a high-speed, $80,000 camera that captures images much like a skydiver might photograph a fellow jumper in free fall.

They observed falling 100-micrometer-diameter glass beads, or streaming sand, and found that forces as much as 100,000 times smaller than those that produce surface tension in ordinary liquids could cause droplet formation in granular streams and cause these dry streams to behave like an ultra-low-surface-tension liquid.

John Royer, the graduate student in physics at the University of Chicago, who developed the apparatus, and his colleagues also directly measured grain-to-grain interactions with an atomic force microscope.

"At first we thought grain-grain interactions would be far too weak to influence the granular stream," said Royer. "The atomic force microscopy surprised us by demonstrating that small changes in these interactions could have a large impact on the break up of the stream, conclusively showing that these interactions were actually controlling the droplet formation."

Researchers say understanding how dry materials coalesce could create greater efficiencies in their transportation and manipulation. The pharmaceutical production of pills, for example, could benefit by pouring equal amounts of a drug into a capsule every time while greatly reducing waste.

"Estimates show that we waste 60 percent of the capacity of many of our industrial plants due to problems related to the transport of these materials," said Jaeger. "Hence even a small improvement in our understanding of how granular media behave should have a profound impact for industry."

The researchers write in their report that these "experimental results open up new territory for which there currently is no theoretical framework."

"Our experiments ask two questions for which currently there is no established answer," said Jaeger. "Both questions are about how a liquid breaks apart. How does the break-up proceed in the ultra-low surface-tension limit and what happens in the ultra-low temperature limit when particles cease to move relative to each other?

"It is quite remarkable that a granular stream consisting of macroscopic particles provides a model system to explore it."


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Streaming Sand Grains Help Define Essence Of A Liquid." ScienceDaily. ScienceDaily, 25 June 2009. <www.sciencedaily.com/releases/2009/06/090624152946.htm>.
National Science Foundation. (2009, June 25). Streaming Sand Grains Help Define Essence Of A Liquid. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/06/090624152946.htm
National Science Foundation. "Streaming Sand Grains Help Define Essence Of A Liquid." ScienceDaily. www.sciencedaily.com/releases/2009/06/090624152946.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins