Featured Research

from universities, journals, and other organizations

Engineering Autism: Mice With Extra Chromosome Region Show Many Autistic Signs

Date:
June 26, 2009
Source:
Cell Press
Summary:
Mice who inherit a particular chromosomal duplication from their fathers show many behaviors associated with human autism, researchers report. The duplicated chromosomal region in mice is the equivalent of human chromosome 15q11-13, the most frequent cytogenetic abnormality observed in autism, accounting for some five percent of all cases.

Mice who inherit a particular chromosomal duplication from their fathers show many behaviors associated with human autism, researchers report in the June 26th issue of the journal Cell. The duplicated chromosomal region in mice is the equivalent of human chromosome 15q11-13, the most frequent cytogenetic abnormality observed in autism, accounting for some five percent of all cases.

Related Articles


The engineered mice validate the human chromosome abnormality as one cause of the disease, the researchers said. They will also serve as an invaluable tool for therapeutic development.

"We know several mice as 'putative' models of autism, which show face validity that they are similar to human patients," said Toru Takumi of Hiroshima University in Japan. "In addition to these similar phenotypes, our mice have construct validity," meaning that their symptoms are traced to the same biological cause.

Autism is a common and heterogeneous neuropsychiatric disorder with manifestations of impaired social interaction and communication as well as repetitive behavior or restricted interest, the researchers explained. It is also one of the most heritable of all mental disorders, suggesting that genetic factors play an important role in development of the disease.

Scientists have studied many gene candidates, and mice carrying some of those mutations do show some signs. Still the molecular pathways underlying autism remain largely mysterious.

Chromosomal abnormalities are thought to account for 10 to 20 percent of cases and duplication of chromosome 15q11-13 is the only recurrent aberration so far linked to the disease.

In the new study, Takumi's team generated mice with a duplication of a region on their chromosome 7, mirroring the autism-linked abnormality seen in humans. Mice who inherit that abnormality from their fathers show poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations and indications of anxiety, the results of extensive behavioral testing now show.

For instance, when given the option of spending time alone or in the presence of a stranger mouse, normal mice will often choose to hang out with the stranger, Takumi said. Mice with the chromosomal abnormality, on the other hand, more often choose to spend time with inanimate objects over fellow mice.

In tests of spatial memory, in which mice are trained to swim to a hidden platform, animals with the paternally inherited duplication were less able to adapt to changes in the platform's location than normal mice were. Another test, in which mice have to locate the correct hole to exit a box, showed similar results.

"We were honestly surprised to see behavioral inflexibility in two different reversal tests of learning and two different backgrounds," Takumi said. "Higher ultrasonic calls from pups with paternal duplication were unexpected" too. It's also hard to say exactly what those unusual calls mean for the mice, given scientists' limited understanding of mouse communication.

In other tests, the mice showed more signs of fear or anxiety, a feature common in autistic individuals.

The researchers also found molecular-level evidence that the duplication can lead to changes in a receptor for serotonin, a nerve messenger that acts as a growth factor in the immature brain. Those changes stem from different levels of one brain-specific small nucleolar RNA (snoRNA), known as MBII52, a molecule that is known to be involved in physiologically important "edits" to the receptor.

Because the gene that encodes MBII52 is "maternally imprinted," its expression in mice with the inherited duplication from their father was double that of normal mice or those who inherited the same abnormality from their mothers, they report. (Imprinted genes are chemically modified to prevent their expression.) Studies in cultured neurons showed that those changes to MBII52 are associated with an altered neural response, suggesting that changes in serotonin signals might underlie the aberrant behaviors exhibited by the animals.

In addition to those insights, the mice may yet hold many more clues for understanding autism and potential for new treatments.

"The link between social behaviors in rodents and social behavior in humans is difficult to establish," the researchers concluded. "Our model mouse will be valuable not only for therapeutic studies but also provides a starting point for more detailed genetic analysis directed toward understanding the etiology of developmental brain disorders."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Engineering Autism: Mice With Extra Chromosome Region Show Many Autistic Signs." ScienceDaily. ScienceDaily, 26 June 2009. <www.sciencedaily.com/releases/2009/06/090625133053.htm>.
Cell Press. (2009, June 26). Engineering Autism: Mice With Extra Chromosome Region Show Many Autistic Signs. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2009/06/090625133053.htm
Cell Press. "Engineering Autism: Mice With Extra Chromosome Region Show Many Autistic Signs." ScienceDaily. www.sciencedaily.com/releases/2009/06/090625133053.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com
One Dose, Then Surgery to Test Tumor Drugs Fast

One Dose, Then Surgery to Test Tumor Drugs Fast

AP (Jan. 23, 2015) — A Phoenix hospital is experimenting with a faster way to test much needed medications for deadly brain tumors. Patients get a single dose of a potential drug, and hours later have their tumor removed to see if the drug had any affect. (Jan. 23) Video provided by AP
Powered by NewsLook.com
The Best Bedtime Rituals For a Good Night's Sleep

The Best Bedtime Rituals For a Good Night's Sleep

Buzz60 (Jan. 22, 2015) — What you do before bed can effect how well you sleep. TC Newman (@PurpleTCNewman) has bedtime rituals to induce the best night&apos;s sleep. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins