Featured Research

from universities, journals, and other organizations

Superconductivity: Which One Of These Is Not Like The Other?

Date:
July 17, 2009
Source:
American Physical Society
Summary:
Superconductivity appears to rely on very different mechanisms in two varieties of iron-based superconductors.

Superconductivity appears to rely on very different mechanisms in two varieties of iron-based superconductors.
Credit: American Physical Society [Illustration: Alan Stonebraker]

Superconductivity appears to rely on very different mechanisms in two varieties of iron-based superconductors. The insight comes from research groups that are making bold statements about the correct description of superconductivity in iron-based compounds in two papers about to be published in journals of the American Physical Society.

The 2008 discovery of high-temperature superconductivity in iron-based compounds has led to a flood of research in the past year. As the literature mounts on these materials, which superconduct at temperatures as high as 55 K, two key questions are emerging: Is the origin of superconductivity in all of the iron-based compounds the same and are these materials similar to the copper oxide-based high-temperature superconductors (commonly known as cuprates), which physicists have studied for nearly twenty years but are still unable to explain with a complete theory?

These questions are addressed separately in two papers highlighted in the July 13 issue of Physics. A collaboration between scientists at Lawrence Berkeley National Lab, the SLAC National Accelerator Laboratory, Stanford University and institutions in Switzerland, China, Mexico and the Netherlands reports in Physical Review B x-ray experiments indicating that, in iron-based superconductors that contain arsenic or phosphorus (called 'iron pnictides'), the electrons that ultimately pair to form the superconducting state behave differently than those in the cuprates. More specifically, while the electrons in the cuprates are strongly correlated – meaning the energy of one electron is tied to the energy of the others – the electrons in the iron-pnictide superconductors behave more like those of a normal metal in which the electrons do not (to first approximation) interact.

In a paper appearing in Physical Review Letters, scientists at Princeton, UC Berkeley and Shanghai Jiao Tong University in China present the first photoemission measurements on an iron-based superconductor that contains tellurium, Fe1+xTe. They argue the origin of superconductivity in this type of iron compound, which belongs to a class of materials called the iron-chalcogenides, has a different origin than in the arsenic and phosphorus containing iron-pnictides. In fact, the measurements suggest that superconductivity in the iron-chalcogenides may be more similar to that of the cuprates.

The statements put forth in these two articles are likely to influence the direction taken by physicists who work on the theory of iron-based superconductors.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Superconductivity: Which One Of These Is Not Like The Other?." ScienceDaily. ScienceDaily, 17 July 2009. <www.sciencedaily.com/releases/2009/07/090713085014.htm>.
American Physical Society. (2009, July 17). Superconductivity: Which One Of These Is Not Like The Other?. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2009/07/090713085014.htm
American Physical Society. "Superconductivity: Which One Of These Is Not Like The Other?." ScienceDaily. www.sciencedaily.com/releases/2009/07/090713085014.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com
Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) — Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins