Featured Research

from universities, journals, and other organizations

Targeting Specific Proteins To Halt Advanced Metastatic Breast Cancer

Date:
July 18, 2009
Source:
Cold Spring Harbor Laboratory
Summary:
Two specific matrix metalloproteinase (MMP) proteins have been found to contribute to bone metastasis in advanced breast cancer -- lending important new insight into the design of clinically useful small molecule inhibitors.

An upcoming Genes & Development paper reveals how two specific matrix metalloproteinase (MMP) proteins contribute to bone metastasis in advanced breast cancer – lending important new insight into the design of clinically useful small molecule inhibitors.

The study was led by Dr. Yibin Kang in Princeton University in close collaboration with Dr. Joan Massagué at MSKCC and Dr. Michael Reiss at the Cancer Institute of New Jersey. 

"More than 70% of late stage breast cancer patients have skeletal complications," explains Dr. Yibin Kang. "It is important to uncover molecular mechanism of bone metastasis in order to come up with better treatments to reduce the pain and suffering from bone metastasis."

MMPs are a large class of related enzymatic proteins that degrade the extracellular matrix. Normal MMP activity is tightly regulated, and is necessary for a number of physiological processes, like tissue remodeling, angiogenesis, ovulation and wound healing. However, MMP dysregulation facilitates tumor metastasis.

MMP1 and ADAMTS1 are two different MMP family members that were previously identified in a genomic screen for breast cancer bone metastasis genes. Dr. Kang and colleagues now show how alterations in MMP1 and ADAMTS1 expression promote bone metastasis.

MMP1 and ADAMTS1 are upregulated in breast cancer cell lines with an enhanced ability to metastasize to bone. Dr. Kang and colleagues demonstrated that MMP1 and ADAMTS1 enzymatically cleave and release EGF-like growth factors from tumor cells to stimulate EGFR signaling in the bone-building osteoblasts. The researchers went on to show that such signaling reduces the production of OPG, a suppressor of the bone-resorbing osteoclasts, eventually leading to hyperactivity of osteoclasts, bone destruction and subsequent expansion of bone metastasis.

Thus, this paper supports a rationale for the therapeutic targeting of MMP1 and ADAMTS1, and suggests that inhibition of EGFR signaling in bone stromal cells to block osteoclast activity may represent a viable method of mitigating bone complications in advanced metastatic breast cancers.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xin Lu, Qiongqing Wang, Guohong Hu, Catherine Van Poznak, Martin Fleisher, Michael Reiss, Joan Massague, and Yibin Kang. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes & Development, DOI: 10.1101/gad.1824809

Cite This Page:

Cold Spring Harbor Laboratory. "Targeting Specific Proteins To Halt Advanced Metastatic Breast Cancer." ScienceDaily. ScienceDaily, 18 July 2009. <www.sciencedaily.com/releases/2009/07/090716123314.htm>.
Cold Spring Harbor Laboratory. (2009, July 18). Targeting Specific Proteins To Halt Advanced Metastatic Breast Cancer. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/07/090716123314.htm
Cold Spring Harbor Laboratory. "Targeting Specific Proteins To Halt Advanced Metastatic Breast Cancer." ScienceDaily. www.sciencedaily.com/releases/2009/07/090716123314.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins