Featured Research

from universities, journals, and other organizations

Central Nervous System Repair? Neuronal Survival And Axonal Regrowth Obtained In Vitro

Date:
July 24, 2009
Source:
INSERM (Institut national de la santé et de la recherche médicale)
Summary:
While repair of the central nervous system has long been considered impossible, researchers have just developed a strategy that could promote neuronal regeneration after injury.

While repair of the central nervous system has long been considered impossible, French researchers from Inserm, the CNRS and the UPMC have just developed a strategy that could promote neuronal regeneration after injury. The in vitro studies have just been published in the journal PLoS One.

Repair of the central nervous system and restoration of voluntary motor activity through axonal re-growth has long been considered impossible in mammals. Over the last decade, numerous attempts proved disappointing overall. The Inserm team led by Alain Privat has recently shown that an essential component interfering with regeneration was due to the activity of astrocytes, feeder cells that surround neurons.

Normally, the primary role of astrocytes is to supply the nutrients necessary for neuronal function. In the event of spinal injury or lesion, astrocytes synthesize two particular proteins (glial fibrillary acidic protein (GFAP) and vimentin), which isolate the damaged neuron to prevent interference with the operation of the central nervous system.

While the protection is initially useful, in the long run it induces formation of impermeable cicatricial tissue around the neuron, thus constituting impenetrable scarring hostile to axonal regeneration and hence to propagation of nervous impulses. In the event of severe injury, the scarring engenders motor paralysis.

On the basis of the initial findings, the researchers pursued a strategy aimed at developing a therapeutic instrument to block formation of cicatricial tissue. In order to do so, they used gene therapy based on use of interfering RNA. The short RNA sequences, which were made to measure, were inserted into the cytoplasm of cultured astrocytes using a viral therapeutic vector. Once in the cell, the RNA activates mechanisms which block the synthesis of the two proteins secreted by astrocytes and responsible for cicatrix formation. Using that technique, the researchers succeeded in controlling the reaction of astrocytes and when the latter were cultured with neurons, they promoted neuronal survival and triggered axonal growth.

The promising results are now to be validated by in vivo studies. The next stage of the work, currently ongoing, applies the same method to the mouse. The approach may be used in the future in patients having undergone spinal injury.


Story Source:

The above story is based on materials provided by INSERM (Institut national de la santé et de la recherche médicale). Note: Materials may be edited for content and length.


Journal Reference:

  1. Desclaux Mathieu, Teigell Marisa, Amar Lahouari, Vogel Roland, Gimenez y Ribotta Minerva, Privat Alain and Mallet Jacques. A novel and efficient gene transfer strategy reduces glial scarring and improves neuronal survival and axonal growth in vitro. PLoS ONE, (in press)

Cite This Page:

INSERM (Institut national de la santé et de la recherche médicale). "Central Nervous System Repair? Neuronal Survival And Axonal Regrowth Obtained In Vitro." ScienceDaily. ScienceDaily, 24 July 2009. <www.sciencedaily.com/releases/2009/07/090724113546.htm>.
INSERM (Institut national de la santé et de la recherche médicale). (2009, July 24). Central Nervous System Repair? Neuronal Survival And Axonal Regrowth Obtained In Vitro. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/07/090724113546.htm
INSERM (Institut national de la santé et de la recherche médicale). "Central Nervous System Repair? Neuronal Survival And Axonal Regrowth Obtained In Vitro." ScienceDaily. www.sciencedaily.com/releases/2009/07/090724113546.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) — The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) — An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) — The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) — Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins