Featured Research

from universities, journals, and other organizations

Nanophysics: Serving Up Buckyballs On A Silver Platter

Date:
August 21, 2009
Source:
American Physical Society
Summary:
New measurements conducted on C60 molecules (carbon Buckyballs) adhered to silver substrates push the limits of surface science.

Scientists have imaged the complete structure of C60 molecules on a silver surface with electron diffraction.
Credit: Image copyright American Physical Society [Illustration: Alan Stonebraker after H. I. Li et al.]

Scientists at Penn State University, in collaboration with institutes in the US, Finland, Germany and the UK, have figured out the long-sought structure of a layer of C60 – carbon buckyballs – on a silver surface. The results, which could help in the design of carbon nanostructure-based electronics are reported in Physical Review Letters and highlighted in the July 27th issue of APS's online journal Physics.

Ever since the 1985 discovery of C60, this molecule, with its perfect geodesic dome shape has fascinated scientists, physicists, and chemists alike. Like a soccer ball, the molecule consists of 20 carbon hexagons and 12 carbon pentagons. The electronic properties of C60 are very unusual, and there is a massive research effort toward integrating it into molecular scale electronic devices like transistors and logic gates.

To do this, researchers need to know how the molecule forms bonds with a metal substrate, such as silver, which is commonly used as an electrode in devices. Now, Hsin-I Li, Renee Diehl, and colleagues have determined the geometry of C60 on a silver surface using a technique called low-energy electron diffraction.

They find that the silver atoms rearrange in such a way – namely, by forming a 'hole' beneath each C60 molecule - that reinforces the bonding between the carbon structure and the silver surface.

The measurements push the limits of surface science because the molecules and the re-arrangement of the underlying silver atoms are quite complex. The measurements thus open the door to studies of a large number of technologically and biologically important molecules on surfaces.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Nanophysics: Serving Up Buckyballs On A Silver Platter." ScienceDaily. ScienceDaily, 21 August 2009. <www.sciencedaily.com/releases/2009/07/090727102133.htm>.
American Physical Society. (2009, August 21). Nanophysics: Serving Up Buckyballs On A Silver Platter. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2009/07/090727102133.htm
American Physical Society. "Nanophysics: Serving Up Buckyballs On A Silver Platter." ScienceDaily. www.sciencedaily.com/releases/2009/07/090727102133.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins